/* * TriCore emulation for qemu: fpu helper. * * Copyright (c) 2016 Bastian Koppelmann University of Paderborn * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #define QUIET_NAN 0x7fc00000 #define ADD_NAN 0x7fc00001 #define SQRT_NAN 0x7fc00004 #define DIV_NAN 0x7fc00008 #define MUL_NAN 0x7fc00002 #define FPU_FS PSW_USB_C #define FPU_FI PSW_USB_V #define FPU_FV PSW_USB_SV #define FPU_FZ PSW_USB_AV #define FPU_FU PSW_USB_SAV #define float32_sqrt_nan make_float32(SQRT_NAN) #define float32_quiet_nan make_float32(QUIET_NAN) /* we don't care about input_denormal */ static inline uint8_t f_get_excp_flags(CPUTriCoreState *env) { return get_float_exception_flags(&env->fp_status) & (float_flag_invalid | float_flag_overflow | float_flag_underflow | float_flag_output_denormal | float_flag_divbyzero | float_flag_inexact); } static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2, float32 arg3, float32 result, uint32_t muladd_negate_c) { uint32_t aSign, bSign, cSign; uint32_t aExp, bExp, cExp; if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) || float32_is_any_nan(arg3)) { return QUIET_NAN; } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) { return MUL_NAN; } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) { return MUL_NAN; } else { aSign = arg1 >> 31; bSign = arg2 >> 31; cSign = arg3 >> 31; aExp = (arg1 >> 23) & 0xff; bExp = (arg2 >> 23) & 0xff; cExp = (arg3 >> 23) & 0xff; if (muladd_negate_c) { cSign ^= 1; } if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) { if (aSign ^ bSign ^ cSign) { return ADD_NAN; } } } return result; } static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags) { uint8_t some_excp = 0; set_float_exception_flags(0, &env->fp_status); if (flags & float_flag_invalid) { env->FPU_FI = 1 << 31; some_excp = 1; } if (flags & float_flag_overflow) { env->FPU_FV = 1 << 31; some_excp = 1; } if (flags & float_flag_underflow || flags & float_flag_output_denormal) { env->FPU_FU = 1 << 31; some_excp = 1; } if (flags & float_flag_divbyzero) { env->FPU_FZ = 1 << 31; some_excp = 1; } if (flags & float_flag_inexact || flags & float_flag_output_denormal) { env->PSW |= 1 << 26; some_excp = 1; } env->FPU_FS = some_excp; } #define FADD_SUB(op) \ uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \ { \ float32 arg1 = make_float32(r1); \ float32 arg2 = make_float32(r2); \ uint32_t flags; \ float32 f_result; \ \ f_result = float32_##op(arg2, arg1, &env->fp_status); \ flags = f_get_excp_flags(env); \ if (flags) { \ /* If the output is a NaN, but the inputs aren't, \ we return a unique value. */ \ if ((flags & float_flag_invalid) \ && !float32_is_any_nan(arg1) \ && !float32_is_any_nan(arg2)) { \ f_result = ADD_NAN; \ } \ f_update_psw_flags(env, flags); \ } else { \ env->FPU_FS = 0; \ } \ return (uint32_t)f_result; \ } FADD_SUB(add) FADD_SUB(sub) uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 f_result; f_result = float32_mul(arg1, arg2, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { /* If the output is a NaN, but the inputs aren't, we return a unique value. */ if ((flags & float_flag_invalid) && !float32_is_any_nan(arg1) && !float32_is_any_nan(arg2)) { f_result = MUL_NAN; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } /* * Target TriCore QSEED.F significand Lookup Table * * The QSEED.F output significand depends on the least-significant * exponent bit and the 6 most-significant significand bits. * * IEEE 754 float datatype * partitioned into Sign (S), Exponent (E) and Significand (M): * * S E E E E E E E E M M M M M M ... * | | | * +------+------+-------+-------+ * | | * for lookup table * calculating index for * output E output M * * This lookup table was extracted by analyzing QSEED output * from the real hardware */ static const uint8_t target_qseed_significand_table[128] = { 253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216, 211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184, 179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156, 153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132, 131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114, 111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83, 82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55, 54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33, 32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 }; uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1) { uint32_t arg1, S, E, M, E_minus_one, m_idx; uint32_t new_E, new_M, new_S, result; arg1 = make_float32(r1); /* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */ S = extract32(arg1, 31, 1); E = extract32(arg1, 23, 8); M = extract32(arg1, 17, 6); if (float32_is_any_nan(arg1)) { result = float32_quiet_nan; } else if (float32_is_zero_or_denormal(arg1)) { if (float32_is_neg(arg1)) { result = float32_infinity | (1 << 31); } else { result = float32_infinity; } } else if (float32_is_neg(arg1)) { result = float32_sqrt_nan; } else if (float32_is_infinity(arg1)) { result = float32_zero; } else { E_minus_one = E - 1; m_idx = ((E_minus_one & 1) << 6) | M; new_S = S; new_E = 0xBD - E_minus_one / 2; new_M = target_qseed_significand_table[m_idx]; result = 0; result = deposit32(result, 31, 1, new_S); result = deposit32(result, 23, 8, new_E); result = deposit32(result, 15, 8, new_M); } if (float32_is_signaling_nan(arg1, &env->fp_status) || result == float32_sqrt_nan) { env->FPU_FI = 1 << 31; env->FPU_FS = 1; } else { env->FPU_FS = 0; } return (uint32_t) result; } uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 f_result; f_result = float32_div(arg1, arg2 , &env->fp_status); flags = f_get_excp_flags(env); if (flags) { /* If the output is a NaN, but the inputs aren't, we return a unique value. */ if ((flags & float_flag_invalid) && !float32_is_any_nan(arg1) && !float32_is_any_nan(arg2)) { f_result = DIV_NAN; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 arg3 = make_float32(r3); float32 f_result; f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (flags & float_flag_invalid) { arg1 = float32_squash_input_denormal(arg1, &env->fp_status); arg2 = float32_squash_input_denormal(arg2, &env->fp_status); arg3 = float32_squash_input_denormal(arg3, &env->fp_status); f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0); } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 arg3 = make_float32(r3); float32 f_result; f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (flags & float_flag_invalid) { arg1 = float32_squash_input_denormal(arg1, &env->fp_status); arg2 = float32_squash_input_denormal(arg2, &env->fp_status); arg3 = float32_squash_input_denormal(arg3, &env->fp_status); f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1); } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t result, flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); set_flush_inputs_to_zero(0, &env->fp_status); result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1); result |= float32_is_denormal(arg1) << 4; result |= float32_is_denormal(arg2) << 5; flags = f_get_excp_flags(env); if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } set_flush_inputs_to_zero(1, &env->fp_status); return result; } uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg) { float32 f_arg = make_float32(arg); int32_t result, flags; result = float32_to_int32(f_arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (float32_is_any_nan(f_arg)) { result = 0; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)result; } uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg) { float32 f_result; uint32_t flags; f_result = int32_to_float32(arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg) { float32 f_result; uint32_t flags; f_result = uint32_to_float32(arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg) { float32 f_arg = make_float32(arg); uint32_t result; int32_t flags; result = float32_to_int32_round_to_zero(f_arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags & float_flag_invalid) { flags &= ~float_flag_inexact; if (float32_is_any_nan(f_arg)) { result = 0; } } if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return result; } uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg) { float32 f_arg = make_float32(arg); uint32_t result; int32_t flags; result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags & float_flag_invalid) { flags &= ~float_flag_inexact; if (float32_is_any_nan(f_arg)) { result = 0; } } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) { flags = float_flag_invalid; result = 0; } if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return result; } void helper_updfl(CPUTriCoreState *env, uint32_t arg) { env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1); env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31; env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31; env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31; env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31; /* clear FX and RM */ env->PSW &= ~(extract32(arg, 10, 1) << 26); env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26; fpu_set_state(env); }