/* * QEMU TCG support -- s390x vector floating point instruction support * * Copyright (C) 2019 Red Hat Inc * * Authors: * David Hildenbrand * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "cpu.h" #include "internal.h" #include "vec.h" #include "tcg_s390x.h" #include "tcg/tcg-gvec-desc.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #define VIC_INVALID 0x1 #define VIC_DIVBYZERO 0x2 #define VIC_OVERFLOW 0x3 #define VIC_UNDERFLOW 0x4 #define VIC_INEXACT 0x5 /* returns the VEX. If the VEX is 0, there is no trap */ static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC, uint8_t *vec_exc) { uint8_t vece_exc = 0, trap_exc; unsigned qemu_exc; /* Retrieve and clear the softfloat exceptions */ qemu_exc = env->fpu_status.float_exception_flags; if (qemu_exc == 0) { return 0; } env->fpu_status.float_exception_flags = 0; vece_exc = s390_softfloat_exc_to_ieee(qemu_exc); /* Add them to the vector-wide s390x exception bits */ *vec_exc |= vece_exc; /* Check for traps and construct the VXC */ trap_exc = vece_exc & env->fpc >> 24; if (trap_exc) { if (trap_exc & S390_IEEE_MASK_INVALID) { return enr << 4 | VIC_INVALID; } else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) { return enr << 4 | VIC_DIVBYZERO; } else if (trap_exc & S390_IEEE_MASK_OVERFLOW) { return enr << 4 | VIC_OVERFLOW; } else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) { return enr << 4 | VIC_UNDERFLOW; } else if (!XxC) { g_assert(trap_exc & S390_IEEE_MASK_INEXACT); /* inexact has lowest priority on traps */ return enr << 4 | VIC_INEXACT; } } return 0; } static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc, uintptr_t retaddr) { if (vxc) { /* on traps, the fpc flags are not updated, instruction is suppressed */ tcg_s390_vector_exception(env, vxc, retaddr); } if (vec_exc) { /* indicate exceptions for all elements combined */ env->fpc |= vec_exc << 16; } } typedef uint64_t (*vop64_2_fn)(uint64_t a, float_status *s); static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, bool XxC, uint8_t erm, vop64_2_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i, old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); for (i = 0; i < 2; i++) { const uint64_t a = s390_vec_read_element64(v2, i); s390_vec_write_element64(&tmp, i, fn(a, &env->fpu_status)); vxc = check_ieee_exc(env, i, XxC, &vec_exc); if (s || vxc) { break; } } s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } typedef uint64_t (*vop64_3_fn)(uint64_t a, uint64_t b, float_status *s); static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vop64_3_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { const uint64_t a = s390_vec_read_element64(v2, i); const uint64_t b = s390_vec_read_element64(v3, i); s390_vec_write_element64(&tmp, i, fn(a, b, &env->fpu_status)); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static uint64_t vfa64(uint64_t a, uint64_t b, float_status *s) { return float64_add(a, b, s); } void HELPER(gvec_vfa64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, false, vfa64, GETPC()); } void HELPER(gvec_vfa64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, true, vfa64, GETPC()); } static int wfc64(const S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool signal, uintptr_t retaddr) { /* only the zero-indexed elements are compared */ const float64 a = s390_vec_read_element64(v1, 0); const float64 b = s390_vec_read_element64(v2, 0); uint8_t vxc, vec_exc = 0; int cmp; if (signal) { cmp = float64_compare(a, b, &env->fpu_status); } else { cmp = float64_compare_quiet(a, b, &env->fpu_status); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); return float_comp_to_cc(env, cmp); } void HELPER(gvec_wfc64)(const void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { env->cc_op = wfc64(v1, v2, env, false, GETPC()); } void HELPER(gvec_wfk64)(const void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { env->cc_op = wfc64(v1, v2, env, true, GETPC()); } typedef int (*vfc64_fn)(float64 a, float64 b, float_status *status); static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int match = 0; int i; for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_element64(v2, i); const float64 b = s390_vec_read_element64(v3, i); /* swap the order of the parameters, so we can use existing functions */ if (fn(b, a, &env->fpu_status)) { match++; s390_vec_write_element64(&tmp, i, -1ull); } vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; if (match) { return s || match == 2 ? 0 : 1; } return 3; } void HELPER(gvec_vfce64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, false, float64_eq_quiet, GETPC()); } void HELPER(gvec_vfce64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, true, float64_eq_quiet, GETPC()); } void HELPER(gvec_vfce64_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, false, float64_eq_quiet, GETPC()); } void HELPER(gvec_vfce64s_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, true, float64_eq_quiet, GETPC()); } void HELPER(gvec_vfch64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, false, float64_lt_quiet, GETPC()); } void HELPER(gvec_vfch64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, true, float64_lt_quiet, GETPC()); } void HELPER(gvec_vfch64_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, false, float64_lt_quiet, GETPC()); } void HELPER(gvec_vfch64s_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, true, float64_lt_quiet, GETPC()); } void HELPER(gvec_vfche64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, false, float64_le_quiet, GETPC()); } void HELPER(gvec_vfche64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vfc64(v1, v2, v3, env, true, float64_le_quiet, GETPC()); } void HELPER(gvec_vfche64_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, false, float64_le_quiet, GETPC()); } void HELPER(gvec_vfche64s_cc)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { env->cc_op = vfc64(v1, v2, v3, env, true, float64_le_quiet, GETPC()); } static uint64_t vcdg64(uint64_t a, float_status *s) { return int64_to_float64(a, s); } void HELPER(gvec_vcdg64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, false, XxC, erm, vcdg64, GETPC()); } void HELPER(gvec_vcdg64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, true, XxC, erm, vcdg64, GETPC()); } static uint64_t vcdlg64(uint64_t a, float_status *s) { return uint64_to_float64(a, s); } void HELPER(gvec_vcdlg64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, false, XxC, erm, vcdlg64, GETPC()); } void HELPER(gvec_vcdlg64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, true, XxC, erm, vcdlg64, GETPC()); } static uint64_t vcgd64(uint64_t a, float_status *s) { return float64_to_int64(a, s); } void HELPER(gvec_vcgd64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, false, XxC, erm, vcgd64, GETPC()); } void HELPER(gvec_vcgd64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, true, XxC, erm, vcgd64, GETPC()); } static uint64_t vclgd64(uint64_t a, float_status *s) { return float64_to_uint64(a, s); } void HELPER(gvec_vclgd64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, false, XxC, erm, vclgd64, GETPC()); } void HELPER(gvec_vclgd64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, true, XxC, erm, vclgd64, GETPC()); } static uint64_t vfd64(uint64_t a, uint64_t b, float_status *s) { return float64_div(a, b, s); } void HELPER(gvec_vfd64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, false, vfd64, GETPC()); } void HELPER(gvec_vfd64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, true, vfd64, GETPC()); } static uint64_t vfi64(uint64_t a, float_status *s) { return float64_round_to_int(a, s); } void HELPER(gvec_vfi64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, false, XxC, erm, vfi64, GETPC()); } void HELPER(gvec_vfi64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vop64_2(v1, v2, env, true, XxC, erm, vfi64, GETPC()); } static void vfll32(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { /* load from even element */ const float32 a = s390_vec_read_element32(v2, i * 2); const uint64_t ret = float32_to_float64(a, &env->fpu_status); s390_vec_write_element64(&tmp, i, ret); /* indicate the source element */ vxc = check_ieee_exc(env, i * 2, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { vfll32(v1, v2, env, false, GETPC()); } void HELPER(gvec_vfll32s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { vfll32(v1, v2, env, true, GETPC()); } static void vflr64(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, bool XxC, uint8_t erm, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i, old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); for (i = 0; i < 2; i++) { float64 a = s390_vec_read_element64(v2, i); uint32_t ret = float64_to_float32(a, &env->fpu_status); /* place at even element */ s390_vec_write_element32(&tmp, i * 2, ret); /* indicate the source element */ vxc = check_ieee_exc(env, i, XxC, &vec_exc); if (s || vxc) { break; } } s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vflr64(v1, v2, env, false, XxC, erm, GETPC()); } void HELPER(gvec_vflr64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); vflr64(v1, v2, env, true, XxC, erm, GETPC()); } static uint64_t vfm64(uint64_t a, uint64_t b, float_status *s) { return float64_mul(a, b, s); } void HELPER(gvec_vfm64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, false, vfm64, GETPC()); } void HELPER(gvec_vfm64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, true, vfm64, GETPC()); } static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, const S390Vector *v4, CPUS390XState *env, bool s, int flags, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { const uint64_t a = s390_vec_read_element64(v2, i); const uint64_t b = s390_vec_read_element64(v3, i); const uint64_t c = s390_vec_read_element64(v4, i); uint64_t ret = float64_muladd(a, b, c, flags, &env->fpu_status); s390_vec_write_element64(&tmp, i, ret); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } void HELPER(gvec_vfma64)(void *v1, const void *v2, const void *v3, const void *v4, CPUS390XState *env, uint32_t desc) { vfma64(v1, v2, v3, v4, env, false, 0, GETPC()); } void HELPER(gvec_vfma64s)(void *v1, const void *v2, const void *v3, const void *v4, CPUS390XState *env, uint32_t desc) { vfma64(v1, v2, v3, v4, env, true, 0, GETPC()); } void HELPER(gvec_vfms64)(void *v1, const void *v2, const void *v3, const void *v4, CPUS390XState *env, uint32_t desc) { vfma64(v1, v2, v3, v4, env, false, float_muladd_negate_c, GETPC()); } void HELPER(gvec_vfms64s)(void *v1, const void *v2, const void *v3, const void *v4, CPUS390XState *env, uint32_t desc) { vfma64(v1, v2, v3, v4, env, true, float_muladd_negate_c, GETPC()); } static uint64_t vfsq64(uint64_t a, float_status *s) { return float64_sqrt(a, s); } void HELPER(gvec_vfsq64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { vop64_2(v1, v2, env, false, false, 0, vfsq64, GETPC()); } void HELPER(gvec_vfsq64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { vop64_2(v1, v2, env, true, false, 0, vfsq64, GETPC()); } static uint64_t vfs64(uint64_t a, uint64_t b, float_status *s) { return float64_sub(a, b, s); } void HELPER(gvec_vfs64)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, false, vfs64, GETPC()); } void HELPER(gvec_vfs64s)(void *v1, const void *v2, const void *v3, CPUS390XState *env, uint32_t desc) { vop64_3(v1, v2, v3, env, true, vfs64, GETPC()); } static int vftci64(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, uint16_t i3) { int i, match = 0; for (i = 0; i < 2; i++) { float64 a = s390_vec_read_element64(v2, i); if (float64_dcmask(env, a) & i3) { match++; s390_vec_write_element64(v1, i, -1ull); } else { s390_vec_write_element64(v1, i, 0); } if (s) { break; } } if (match) { return s || match == 2 ? 0 : 1; } return 3; } void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { env->cc_op = vftci64(v1, v2, env, false, simd_data(desc)); } void HELPER(gvec_vftci64s)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { env->cc_op = vftci64(v1, v2, env, true, simd_data(desc)); }