/* * Copyright (C) 2017, Emilio G. Cota * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #ifndef QEMU_PLUGIN_H #define QEMU_PLUGIN_H #include "qemu/config-file.h" #include "qemu/qemu-plugin.h" #include "qemu/error-report.h" #include "qemu/queue.h" #include "qemu/option.h" /* * Option parsing/processing. * Note that we can load an arbitrary number of plugins. */ struct qemu_plugin_desc; typedef QTAILQ_HEAD(, qemu_plugin_desc) QemuPluginList; #ifdef CONFIG_PLUGIN extern QemuOptsList qemu_plugin_opts; static inline void qemu_plugin_add_opts(void) { qemu_add_opts(&qemu_plugin_opts); } void qemu_plugin_opt_parse(const char *optarg, QemuPluginList *head); int qemu_plugin_load_list(QemuPluginList *head); #else /* !CONFIG_PLUGIN */ static inline void qemu_plugin_add_opts(void) { } static inline void qemu_plugin_opt_parse(const char *optarg, QemuPluginList *head) { error_report("plugin interface not enabled in this build"); exit(1); } static inline int qemu_plugin_load_list(QemuPluginList *head) { return 0; } #endif /* !CONFIG_PLUGIN */ /* * Events that plugins can subscribe to. */ enum qemu_plugin_event { QEMU_PLUGIN_EV_VCPU_INIT, QEMU_PLUGIN_EV_VCPU_EXIT, QEMU_PLUGIN_EV_VCPU_TB_TRANS, QEMU_PLUGIN_EV_VCPU_IDLE, QEMU_PLUGIN_EV_VCPU_RESUME, QEMU_PLUGIN_EV_VCPU_SYSCALL, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, QEMU_PLUGIN_EV_FLUSH, QEMU_PLUGIN_EV_ATEXIT, QEMU_PLUGIN_EV_MAX, /* total number of plugin events we support */ }; union qemu_plugin_cb_sig { qemu_plugin_simple_cb_t simple; qemu_plugin_udata_cb_t udata; qemu_plugin_vcpu_simple_cb_t vcpu_simple; qemu_plugin_vcpu_udata_cb_t vcpu_udata; qemu_plugin_vcpu_tb_trans_cb_t vcpu_tb_trans; qemu_plugin_vcpu_mem_cb_t vcpu_mem; qemu_plugin_vcpu_syscall_cb_t vcpu_syscall; qemu_plugin_vcpu_syscall_ret_cb_t vcpu_syscall_ret; void *generic; }; enum plugin_dyn_cb_type { PLUGIN_CB_INSN, PLUGIN_CB_MEM, PLUGIN_N_CB_TYPES, }; enum plugin_dyn_cb_subtype { PLUGIN_CB_REGULAR, PLUGIN_CB_INLINE, PLUGIN_N_CB_SUBTYPES, }; /* * A dynamic callback has an insertion point that is determined at run-time. * Usually the insertion point is somewhere in the code cache; think for * instance of a callback to be called upon the execution of a particular TB. */ struct qemu_plugin_dyn_cb { union qemu_plugin_cb_sig f; void *userp; unsigned tcg_flags; enum plugin_dyn_cb_subtype type; /* @rw applies to mem callbacks only (both regular and inline) */ enum qemu_plugin_mem_rw rw; /* fields specific to each dyn_cb type go here */ union { struct { enum qemu_plugin_op op; uint64_t imm; } inline_insn; }; }; struct qemu_plugin_insn { GByteArray *data; uint64_t vaddr; void *haddr; GArray *cbs[PLUGIN_N_CB_TYPES][PLUGIN_N_CB_SUBTYPES]; bool calls_helpers; bool mem_helper; }; /* * qemu_plugin_insn allocate and cleanup functions. We don't expect to * cleanup many of these structures. They are reused for each fresh * translation. */ static inline void qemu_plugin_insn_cleanup_fn(gpointer data) { struct qemu_plugin_insn *insn = (struct qemu_plugin_insn *) data; g_byte_array_free(insn->data, true); } static inline struct qemu_plugin_insn *qemu_plugin_insn_alloc(void) { int i, j; struct qemu_plugin_insn *insn = g_new0(struct qemu_plugin_insn, 1); insn->data = g_byte_array_sized_new(4); for (i = 0; i < PLUGIN_N_CB_TYPES; i++) { for (j = 0; j < PLUGIN_N_CB_SUBTYPES; j++) { insn->cbs[i][j] = g_array_new(false, false, sizeof(struct qemu_plugin_dyn_cb)); } } return insn; } struct qemu_plugin_tb { GPtrArray *insns; size_t n; uint64_t vaddr; uint64_t vaddr2; void *haddr1; void *haddr2; GArray *cbs[PLUGIN_N_CB_SUBTYPES]; }; /** * qemu_plugin_tb_insn_get(): get next plugin record for translation. * */ static inline struct qemu_plugin_insn *qemu_plugin_tb_insn_get(struct qemu_plugin_tb *tb) { struct qemu_plugin_insn *insn; int i, j; if (unlikely(tb->n == tb->insns->len)) { struct qemu_plugin_insn *new_insn = qemu_plugin_insn_alloc(); g_ptr_array_add(tb->insns, new_insn); } insn = g_ptr_array_index(tb->insns, tb->n++); g_byte_array_set_size(insn->data, 0); insn->calls_helpers = false; insn->mem_helper = false; for (i = 0; i < PLUGIN_N_CB_TYPES; i++) { for (j = 0; j < PLUGIN_N_CB_SUBTYPES; j++) { g_array_set_size(insn->cbs[i][j], 0); } } return insn; } #ifdef CONFIG_PLUGIN void qemu_plugin_vcpu_init_hook(CPUState *cpu); void qemu_plugin_vcpu_exit_hook(CPUState *cpu); void qemu_plugin_tb_trans_cb(CPUState *cpu, struct qemu_plugin_tb *tb); void qemu_plugin_vcpu_idle_cb(CPUState *cpu); void qemu_plugin_vcpu_resume_cb(CPUState *cpu); void qemu_plugin_vcpu_syscall(CPUState *cpu, int64_t num, uint64_t a1, uint64_t a2, uint64_t a3, uint64_t a4, uint64_t a5, uint64_t a6, uint64_t a7, uint64_t a8); void qemu_plugin_vcpu_syscall_ret(CPUState *cpu, int64_t num, int64_t ret); void qemu_plugin_vcpu_mem_cb(CPUState *cpu, uint64_t vaddr, uint32_t meminfo); void qemu_plugin_flush_cb(void); void qemu_plugin_atexit_cb(void); void qemu_plugin_add_dyn_cb_arr(GArray *arr); void qemu_plugin_disable_mem_helpers(CPUState *cpu); #else /* !CONFIG_PLUGIN */ static inline void qemu_plugin_vcpu_init_hook(CPUState *cpu) { } static inline void qemu_plugin_vcpu_exit_hook(CPUState *cpu) { } static inline void qemu_plugin_tb_trans_cb(CPUState *cpu, struct qemu_plugin_tb *tb) { } static inline void qemu_plugin_vcpu_idle_cb(CPUState *cpu) { } static inline void qemu_plugin_vcpu_resume_cb(CPUState *cpu) { } static inline void qemu_plugin_vcpu_syscall(CPUState *cpu, int64_t num, uint64_t a1, uint64_t a2, uint64_t a3, uint64_t a4, uint64_t a5, uint64_t a6, uint64_t a7, uint64_t a8) { } static inline void qemu_plugin_vcpu_syscall_ret(CPUState *cpu, int64_t num, int64_t ret) { } static inline void qemu_plugin_vcpu_mem_cb(CPUState *cpu, uint64_t vaddr, uint32_t meminfo) { } static inline void qemu_plugin_flush_cb(void) { } static inline void qemu_plugin_atexit_cb(void) { } static inline void qemu_plugin_add_dyn_cb_arr(GArray *arr) { } static inline void qemu_plugin_disable_mem_helpers(CPUState *cpu) { } #endif /* !CONFIG_PLUGIN */ #endif /* QEMU_PLUGIN_H */