/* * QEMU ESP/NCR53C9x emulation * * Copyright (c) 2005-2006 Fabrice Bellard * Copyright (c) 2012 Herve Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/irq.h" #include "hw/scsi/esp.h" #include "trace.h" #include "qemu/log.h" #include "qemu/module.h" /* * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), * also produced as NCR89C100. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt * and * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt * * On Macintosh Quadra it is a NCR53C96. */ static void esp_raise_irq(ESPState *s) { if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { s->rregs[ESP_RSTAT] |= STAT_INT; qemu_irq_raise(s->irq); trace_esp_raise_irq(); } } static void esp_lower_irq(ESPState *s) { if (s->rregs[ESP_RSTAT] & STAT_INT) { s->rregs[ESP_RSTAT] &= ~STAT_INT; qemu_irq_lower(s->irq); trace_esp_lower_irq(); } } static void esp_raise_drq(ESPState *s) { qemu_irq_raise(s->irq_data); } static void esp_lower_drq(ESPState *s) { qemu_irq_lower(s->irq_data); } void esp_dma_enable(ESPState *s, int irq, int level) { if (level) { s->dma_enabled = 1; trace_esp_dma_enable(); if (s->dma_cb) { s->dma_cb(s); s->dma_cb = NULL; } } else { trace_esp_dma_disable(); s->dma_enabled = 0; } } void esp_request_cancelled(SCSIRequest *req) { ESPState *s = req->hba_private; if (req == s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } static void set_pdma(ESPState *s, enum pdma_origin_id origin, uint32_t index, uint32_t len) { s->pdma_origin = origin; s->pdma_start = index; s->pdma_cur = index; s->pdma_len = len; } static uint8_t *get_pdma_buf(ESPState *s) { switch (s->pdma_origin) { case PDMA: return s->pdma_buf; case TI: return s->ti_buf; case CMD: return s->cmdbuf; case ASYNC: return s->async_buf; } return NULL; } static int get_cmd_cb(ESPState *s) { int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (s->current_req) { /* Started a new command before the old one finished. Cancel it. */ scsi_req_cancel(s->current_req); s->async_len = 0; } s->current_dev = scsi_device_find(&s->bus, 0, target, 0); if (!s->current_dev) { /* No such drive */ s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = SEQ_0; esp_raise_irq(s); return -1; } return 0; } static uint32_t get_cmd(ESPState *s, uint8_t *buf, uint8_t buflen) { uint32_t dmalen; int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; if (s->dma) { dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; if (dmalen > buflen) { return 0; } if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, buf, dmalen); } else { memcpy(s->pdma_buf, buf, dmalen); set_pdma(s, PDMA, 0, dmalen); esp_raise_drq(s); return 0; } } else { dmalen = s->ti_size; if (dmalen > TI_BUFSZ) { return 0; } memcpy(buf, s->ti_buf, dmalen); buf[0] = buf[2] >> 5; } trace_esp_get_cmd(dmalen, target); if (get_cmd_cb(s) < 0) { return 0; } return dmalen; } static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid) { int32_t datalen; int lun; SCSIDevice *current_lun; trace_esp_do_busid_cmd(busid); lun = busid & 7; current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun); s->current_req = scsi_req_new(current_lun, 0, lun, buf, s); datalen = scsi_req_enqueue(s->current_req); s->ti_size = datalen; if (datalen != 0) { s->rregs[ESP_RSTAT] = STAT_TC; s->dma_left = 0; s->dma_counter = 0; if (datalen > 0) { s->rregs[ESP_RSTAT] |= STAT_DI; } else { s->rregs[ESP_RSTAT] |= STAT_DO; } scsi_req_continue(s->current_req); } s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } static void do_cmd(ESPState *s, uint8_t *buf) { uint8_t busid = buf[0]; do_busid_cmd(s, &buf[1], busid); } static void satn_pdma_cb(ESPState *s) { if (get_cmd_cb(s) < 0) { return; } if (s->pdma_cur != s->pdma_start) { do_cmd(s, get_pdma_buf(s) + s->pdma_start); } } static void handle_satn(ESPState *s) { uint8_t buf[32]; int len; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn; return; } s->pdma_cb = satn_pdma_cb; len = get_cmd(s, buf, sizeof(buf)); if (len) do_cmd(s, buf); } static void s_without_satn_pdma_cb(ESPState *s) { if (get_cmd_cb(s) < 0) { return; } if (s->pdma_cur != s->pdma_start) { do_busid_cmd(s, get_pdma_buf(s) + s->pdma_start, 0); } } static void handle_s_without_atn(ESPState *s) { uint8_t buf[32]; int len; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_s_without_atn; return; } s->pdma_cb = s_without_satn_pdma_cb; len = get_cmd(s, buf, sizeof(buf)); if (len) { do_busid_cmd(s, buf, 0); } } static void satn_stop_pdma_cb(ESPState *s) { if (get_cmd_cb(s) < 0) { return; } s->cmdlen = s->pdma_cur - s->pdma_start; if (s->cmdlen) { trace_esp_handle_satn_stop(s->cmdlen); s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } } static void handle_satn_stop(ESPState *s) { if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn_stop; return; } s->pdma_cb = satn_stop_pdma_cb; s->cmdlen = get_cmd(s, s->cmdbuf, sizeof(s->cmdbuf)); if (s->cmdlen) { trace_esp_handle_satn_stop(s->cmdlen); s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } } static void write_response_pdma_cb(ESPState *s) { s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } static void write_response(ESPState *s) { trace_esp_write_response(s->status); s->ti_buf[0] = s->status; s->ti_buf[1] = 0; if (s->dma) { if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, s->ti_buf, 2); s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; } else { set_pdma(s, TI, 0, 2); s->pdma_cb = write_response_pdma_cb; esp_raise_drq(s); return; } } else { s->ti_size = 2; s->ti_rptr = 0; s->ti_wptr = 2; s->rregs[ESP_RFLAGS] = 2; } esp_raise_irq(s); } static void esp_dma_done(ESPState *s) { s->rregs[ESP_RSTAT] |= STAT_TC; s->rregs[ESP_RINTR] = INTR_BS; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; s->rregs[ESP_TCLO] = 0; s->rregs[ESP_TCMID] = 0; s->rregs[ESP_TCHI] = 0; esp_raise_irq(s); } static void do_dma_pdma_cb(ESPState *s) { int to_device = (s->ti_size < 0); int len = s->pdma_cur - s->pdma_start; if (s->do_cmd) { s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } s->dma_left -= len; s->async_buf += len; s->async_len -= len; if (to_device) { s->ti_size += len; } else { s->ti_size -= len; } if (s->async_len == 0) { scsi_req_continue(s->current_req); /* * If there is still data to be read from the device then * complete the DMA operation immediately. Otherwise defer * until the scsi layer has completed. */ if (to_device || s->dma_left != 0 || s->ti_size == 0) { return; } } /* Partially filled a scsi buffer. Complete immediately. */ esp_dma_done(s); } static void esp_do_dma(ESPState *s) { uint32_t len; int to_device; len = s->dma_left; if (s->do_cmd) { /* * handle_ti_cmd() case: esp_do_dma() is called only from * handle_ti_cmd() with do_cmd != NULL (see the assert()) */ trace_esp_do_dma(s->cmdlen, len); assert (s->cmdlen <= sizeof(s->cmdbuf) && len <= sizeof(s->cmdbuf) - s->cmdlen); if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); } else { set_pdma(s, CMD, s->cmdlen, len); s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); return; } trace_esp_handle_ti_cmd(s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } to_device = (s->ti_size < 0); if (to_device) { if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, s->async_buf, len); } else { set_pdma(s, ASYNC, 0, len); s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); return; } } else { if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, s->async_buf, len); } else { set_pdma(s, ASYNC, 0, len); s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); return; } } s->dma_left -= len; s->async_buf += len; s->async_len -= len; if (to_device) s->ti_size += len; else s->ti_size -= len; if (s->async_len == 0) { scsi_req_continue(s->current_req); /* If there is still data to be read from the device then complete the DMA operation immediately. Otherwise defer until the scsi layer has completed. */ if (to_device || s->dma_left != 0 || s->ti_size == 0) { return; } } /* Partially filled a scsi buffer. Complete immediately. */ esp_dma_done(s); } static void esp_report_command_complete(ESPState *s, uint32_t status) { trace_esp_command_complete(); if (s->ti_size != 0) { trace_esp_command_complete_unexpected(); } s->ti_size = 0; s->dma_left = 0; s->async_len = 0; if (status) { trace_esp_command_complete_fail(); } s->status = status; s->rregs[ESP_RSTAT] = STAT_ST; esp_dma_done(s); if (s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } void esp_command_complete(SCSIRequest *req, uint32_t status, size_t resid) { ESPState *s = req->hba_private; if (s->rregs[ESP_RSTAT] & STAT_INT) { /* Defer handling command complete until the previous * interrupt has been handled. */ trace_esp_command_complete_deferred(); s->deferred_status = status; s->deferred_complete = true; return; } esp_report_command_complete(s, status); } void esp_transfer_data(SCSIRequest *req, uint32_t len) { ESPState *s = req->hba_private; assert(!s->do_cmd); trace_esp_transfer_data(s->dma_left, s->ti_size); s->async_len = len; s->async_buf = scsi_req_get_buf(req); if (s->dma_left) { esp_do_dma(s); } else if (s->dma_counter != 0 && s->ti_size <= 0) { /* If this was the last part of a DMA transfer then the completion interrupt is deferred to here. */ esp_dma_done(s); } } static void handle_ti(ESPState *s) { uint32_t dmalen, minlen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_ti; return; } dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; if (dmalen==0) { dmalen=0x10000; } s->dma_counter = dmalen; if (s->do_cmd) minlen = (dmalen < ESP_CMDBUF_SZ) ? dmalen : ESP_CMDBUF_SZ; else if (s->ti_size < 0) minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size; else minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; trace_esp_handle_ti(minlen); if (s->dma) { s->dma_left = minlen; s->rregs[ESP_RSTAT] &= ~STAT_TC; esp_do_dma(s); } else if (s->do_cmd) { trace_esp_handle_ti_cmd(s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); } } void esp_hard_reset(ESPState *s) { memset(s->rregs, 0, ESP_REGS); memset(s->wregs, 0, ESP_REGS); s->tchi_written = 0; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->dma = 0; s->do_cmd = 0; s->dma_cb = NULL; s->rregs[ESP_CFG1] = 7; } static void esp_soft_reset(ESPState *s) { qemu_irq_lower(s->irq); qemu_irq_lower(s->irq_data); esp_hard_reset(s); } static void parent_esp_reset(ESPState *s, int irq, int level) { if (level) { esp_soft_reset(s); } } uint64_t esp_reg_read(ESPState *s, uint32_t saddr) { uint32_t old_val; trace_esp_mem_readb(saddr, s->rregs[saddr]); switch (saddr) { case ESP_FIFO: if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else if (s->ti_rptr < s->ti_wptr) { s->ti_size--; s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } if (s->ti_rptr == s->ti_wptr) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case ESP_RINTR: /* Clear sequence step, interrupt register and all status bits except TC */ old_val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; s->rregs[ESP_RSTAT] &= ~STAT_TC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_lower_irq(s); if (s->deferred_complete) { esp_report_command_complete(s, s->deferred_status); s->deferred_complete = false; } return old_val; case ESP_TCHI: /* Return the unique id if the value has never been written */ if (!s->tchi_written) { return s->chip_id; } default: break; } return s->rregs[saddr]; } void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) { trace_esp_mem_writeb(saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCHI: s->tchi_written = true; /* fall through */ case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { if (s->cmdlen < ESP_CMDBUF_SZ) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else { trace_esp_error_fifo_overrun(); } } else if (s->ti_wptr == TI_BUFSZ - 1) { trace_esp_error_fifo_overrun(); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; s->rregs[ESP_TCHI] = s->wregs[ESP_TCHI]; } else { s->dma = 0; } switch(val & CMD_CMD) { case CMD_NOP: trace_esp_mem_writeb_cmd_nop(val); break; case CMD_FLUSH: trace_esp_mem_writeb_cmd_flush(val); //s->ti_size = 0; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; break; case CMD_RESET: trace_esp_mem_writeb_cmd_reset(val); esp_soft_reset(s); break; case CMD_BUSRESET: trace_esp_mem_writeb_cmd_bus_reset(val); s->rregs[ESP_RINTR] = INTR_RST; if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { esp_raise_irq(s); } break; case CMD_TI: handle_ti(s); break; case CMD_ICCS: trace_esp_mem_writeb_cmd_iccs(val); write_response(s); s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: trace_esp_mem_writeb_cmd_msgacc(val); s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: trace_esp_mem_writeb_cmd_pad(val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: trace_esp_mem_writeb_cmd_satn(val); break; case CMD_RSTATN: trace_esp_mem_writeb_cmd_rstatn(val); break; case CMD_SEL: trace_esp_mem_writeb_cmd_sel(val); handle_s_without_atn(s); break; case CMD_SELATN: trace_esp_mem_writeb_cmd_selatn(val); handle_satn(s); break; case CMD_SELATNS: trace_esp_mem_writeb_cmd_selatns(val); handle_satn_stop(s); break; case CMD_ENSEL: trace_esp_mem_writeb_cmd_ensel(val); s->rregs[ESP_RINTR] = 0; break; case CMD_DISSEL: trace_esp_mem_writeb_cmd_dissel(val); s->rregs[ESP_RINTR] = 0; esp_raise_irq(s); break; default: trace_esp_error_unhandled_command(val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: case ESP_CFG2: case ESP_CFG3: case ESP_RES3: case ESP_RES4: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; default: trace_esp_error_invalid_write(val, saddr); return; } s->wregs[saddr] = val; } static bool esp_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return (size == 1) || (is_write && size == 4); } static bool esp_pdma_needed(void *opaque) { ESPState *s = opaque; return s->dma_memory_read == NULL && s->dma_memory_write == NULL && s->dma_enabled; } static const VMStateDescription vmstate_esp_pdma = { .name = "esp/pdma", .version_id = 1, .minimum_version_id = 1, .needed = esp_pdma_needed, .fields = (VMStateField[]) { VMSTATE_BUFFER(pdma_buf, ESPState), VMSTATE_INT32(pdma_origin, ESPState), VMSTATE_UINT32(pdma_len, ESPState), VMSTATE_UINT32(pdma_start, ESPState), VMSTATE_UINT32(pdma_cur, ESPState), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_esp = { .name ="esp", .version_id = 4, .minimum_version_id = 3, .fields = (VMStateField[]) { VMSTATE_BUFFER(rregs, ESPState), VMSTATE_BUFFER(wregs, ESPState), VMSTATE_INT32(ti_size, ESPState), VMSTATE_UINT32(ti_rptr, ESPState), VMSTATE_UINT32(ti_wptr, ESPState), VMSTATE_BUFFER(ti_buf, ESPState), VMSTATE_UINT32(status, ESPState), VMSTATE_UINT32(deferred_status, ESPState), VMSTATE_BOOL(deferred_complete, ESPState), VMSTATE_UINT32(dma, ESPState), VMSTATE_PARTIAL_BUFFER(cmdbuf, ESPState, 16), VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf, ESPState, 16, 4), VMSTATE_UINT32(cmdlen, ESPState), VMSTATE_UINT32(do_cmd, ESPState), VMSTATE_UINT32(dma_left, ESPState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_esp_pdma, NULL } }; static void sysbus_esp_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; uint32_t saddr; saddr = addr >> sysbus->it_shift; esp_reg_write(&sysbus->esp, saddr, val); } static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; uint32_t saddr; saddr = addr >> sysbus->it_shift; return esp_reg_read(&sysbus->esp, saddr); } static const MemoryRegionOps sysbus_esp_mem_ops = { .read = sysbus_esp_mem_read, .write = sysbus_esp_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.accepts = esp_mem_accepts, }; static void sysbus_esp_pdma_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = &sysbus->esp; uint32_t dmalen; uint8_t *buf = get_pdma_buf(s); dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; if (dmalen == 0 || s->pdma_len == 0) { return; } switch (size) { case 1: buf[s->pdma_cur++] = val; s->pdma_len--; dmalen--; break; case 2: buf[s->pdma_cur++] = val >> 8; buf[s->pdma_cur++] = val; s->pdma_len -= 2; dmalen -= 2; break; } s->rregs[ESP_TCLO] = dmalen & 0xff; s->rregs[ESP_TCMID] = dmalen >> 8; s->rregs[ESP_TCHI] = dmalen >> 16; if (s->pdma_len == 0 && s->pdma_cb) { esp_lower_drq(s); s->pdma_cb(s); s->pdma_cb = NULL; } } static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = &sysbus->esp; uint8_t *buf = get_pdma_buf(s); uint64_t val = 0; if (s->pdma_len == 0) { return 0; } switch (size) { case 1: val = buf[s->pdma_cur++]; s->pdma_len--; break; case 2: val = buf[s->pdma_cur++]; val = (val << 8) | buf[s->pdma_cur++]; s->pdma_len -= 2; break; } if (s->pdma_len == 0 && s->pdma_cb) { esp_lower_drq(s); s->pdma_cb(s); s->pdma_cb = NULL; } return val; } static const MemoryRegionOps sysbus_esp_pdma_ops = { .read = sysbus_esp_pdma_read, .write = sysbus_esp_pdma_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.min_access_size = 1, .valid.max_access_size = 2, }; static const struct SCSIBusInfo esp_scsi_info = { .tcq = false, .max_target = ESP_MAX_DEVS, .max_lun = 7, .transfer_data = esp_transfer_data, .complete = esp_command_complete, .cancel = esp_request_cancelled }; static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) { SysBusESPState *sysbus = ESP_STATE(opaque); ESPState *s = &sysbus->esp; switch (irq) { case 0: parent_esp_reset(s, irq, level); break; case 1: esp_dma_enable(opaque, irq, level); break; } } static void sysbus_esp_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); SysBusESPState *sysbus = ESP_STATE(dev); ESPState *s = &sysbus->esp; sysbus_init_irq(sbd, &s->irq); sysbus_init_irq(sbd, &s->irq_data); assert(sysbus->it_shift != -1); s->chip_id = TCHI_FAS100A; memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops, sysbus, "esp-regs", ESP_REGS << sysbus->it_shift); sysbus_init_mmio(sbd, &sysbus->iomem); memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops, sysbus, "esp-pdma", 2); sysbus_init_mmio(sbd, &sysbus->pdma); qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2); scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL); } static void sysbus_esp_hard_reset(DeviceState *dev) { SysBusESPState *sysbus = ESP_STATE(dev); esp_hard_reset(&sysbus->esp); } static const VMStateDescription vmstate_sysbus_esp_scsi = { .name = "sysbusespscsi", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), VMSTATE_END_OF_LIST() } }; static void sysbus_esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_esp_realize; dc->reset = sysbus_esp_hard_reset; dc->vmsd = &vmstate_sysbus_esp_scsi; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sysbus_esp_info = { .name = TYPE_ESP, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SysBusESPState), .class_init = sysbus_esp_class_init, }; static void esp_register_types(void) { type_register_static(&sysbus_esp_info); } type_init(esp_register_types)