/* * Memory Device Interface * * Copyright ProfitBricks GmbH 2012 * Copyright (C) 2014 Red Hat Inc * Copyright (c) 2018 Red Hat Inc * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "hw/mem/memory-device.h" #include "qapi/error.h" #include "hw/boards.h" #include "qemu/range.h" #include "hw/virtio/vhost.h" #include "sysemu/kvm.h" #include "trace.h" static gint memory_device_addr_sort(gconstpointer a, gconstpointer b) { const MemoryDeviceState *md_a = MEMORY_DEVICE(a); const MemoryDeviceState *md_b = MEMORY_DEVICE(b); const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a); const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b); const uint64_t addr_a = mdc_a->get_addr(md_a); const uint64_t addr_b = mdc_b->get_addr(md_b); if (addr_a > addr_b) { return 1; } else if (addr_a < addr_b) { return -1; } return 0; } static int memory_device_build_list(Object *obj, void *opaque) { GSList **list = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { DeviceState *dev = DEVICE(obj); if (dev->realized) { /* only realized memory devices matter */ *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort); } } object_child_foreach(obj, memory_device_build_list, opaque); return 0; } static int memory_device_used_region_size(Object *obj, void *opaque) { uint64_t *size = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { const DeviceState *dev = DEVICE(obj); const MemoryDeviceState *md = MEMORY_DEVICE(obj); if (dev->realized) { *size += memory_device_get_region_size(md, &error_abort); } } object_child_foreach(obj, memory_device_used_region_size, opaque); return 0; } static void memory_device_check_addable(MachineState *ms, uint64_t size, Error **errp) { uint64_t used_region_size = 0; /* we will need a new memory slot for kvm and vhost */ if (kvm_enabled() && !kvm_has_free_slot(ms)) { error_setg(errp, "hypervisor has no free memory slots left"); return; } if (!vhost_has_free_slot()) { error_setg(errp, "a used vhost backend has no free memory slots left"); return; } /* will we exceed the total amount of memory specified */ memory_device_used_region_size(OBJECT(ms), &used_region_size); if (used_region_size + size < used_region_size || used_region_size + size > ms->maxram_size - ms->ram_size) { error_setg(errp, "not enough space, currently 0x%" PRIx64 " in use of total space for memory devices 0x" RAM_ADDR_FMT, used_region_size, ms->maxram_size - ms->ram_size); return; } } static uint64_t memory_device_get_free_addr(MachineState *ms, const uint64_t *hint, uint64_t align, uint64_t size, Error **errp) { Error *err = NULL; GSList *list = NULL, *item; Range as, new = range_empty; if (!ms->device_memory) { error_setg(errp, "memory devices (e.g. for memory hotplug) are not " "supported by the machine"); return 0; } if (!memory_region_size(&ms->device_memory->mr)) { error_setg(errp, "memory devices (e.g. for memory hotplug) are not " "enabled, please specify the maxmem option"); return 0; } range_init_nofail(&as, ms->device_memory->base, memory_region_size(&ms->device_memory->mr)); /* start of address space indicates the maximum alignment we expect */ if (!QEMU_IS_ALIGNED(range_lob(&as), align)) { error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported", align); return 0; } memory_device_check_addable(ms, size, &err); if (err) { error_propagate(errp, err); return 0; } if (hint && !QEMU_IS_ALIGNED(*hint, align)) { error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes", align); return 0; } if (!QEMU_IS_ALIGNED(size, align)) { error_setg(errp, "backend memory size must be multiple of 0x%" PRIx64, align); return 0; } if (hint) { if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) { error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64 "], usable range for memory devices [0x%" PRIx64 ":0x%" PRIx64 "]", *hint, size, range_lob(&as), range_size(&as)); return 0; } } else { if (range_init(&new, range_lob(&as), size)) { error_setg(errp, "can't add memory device, device too big"); return 0; } } /* find address range that will fit new memory device */ object_child_foreach(OBJECT(ms), memory_device_build_list, &list); for (item = list; item; item = g_slist_next(item)) { const MemoryDeviceState *md = item->data; const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md)); uint64_t next_addr; Range tmp; range_init_nofail(&tmp, mdc->get_addr(md), memory_device_get_region_size(md, &error_abort)); if (range_overlaps_range(&tmp, &new)) { if (hint) { const DeviceState *d = DEVICE(md); error_setg(errp, "address range conflicts with memory device" " id='%s'", d->id ? d->id : "(unnamed)"); goto out; } next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align); if (!next_addr || range_init(&new, next_addr, range_size(&new))) { range_make_empty(&new); break; } } else if (range_lob(&tmp) > range_upb(&new)) { break; } } if (!range_contains_range(&as, &new)) { error_setg(errp, "could not find position in guest address space for " "memory device - memory fragmented due to alignments"); } out: g_slist_free(list); return range_lob(&new); } MemoryDeviceInfoList *qmp_memory_device_list(void) { GSList *devices = NULL, *item; MemoryDeviceInfoList *list = NULL, *prev = NULL; object_child_foreach(qdev_get_machine(), memory_device_build_list, &devices); for (item = devices; item; item = g_slist_next(item)) { const MemoryDeviceState *md = MEMORY_DEVICE(item->data); const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data); MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1); MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1); mdc->fill_device_info(md, info); elem->value = info; elem->next = NULL; if (prev) { prev->next = elem; } else { list = elem; } prev = elem; } g_slist_free(devices); return list; } static int memory_device_plugged_size(Object *obj, void *opaque) { uint64_t *size = opaque; if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { const DeviceState *dev = DEVICE(obj); const MemoryDeviceState *md = MEMORY_DEVICE(obj); const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj); if (dev->realized) { *size += mdc->get_plugged_size(md, &error_abort); } } object_child_foreach(obj, memory_device_plugged_size, opaque); return 0; } uint64_t get_plugged_memory_size(void) { uint64_t size = 0; memory_device_plugged_size(qdev_get_machine(), &size); return size; } void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms, const uint64_t *legacy_align, Error **errp) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); Error *local_err = NULL; uint64_t addr, align; MemoryRegion *mr; mr = mdc->get_memory_region(md, &local_err); if (local_err) { goto out; } align = legacy_align ? *legacy_align : memory_region_get_alignment(mr); addr = mdc->get_addr(md); addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align, memory_region_size(mr), &local_err); if (local_err) { goto out; } mdc->set_addr(md, addr, &local_err); if (!local_err) { trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); } out: error_propagate(errp, local_err); } void memory_device_plug(MemoryDeviceState *md, MachineState *ms) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); const uint64_t addr = mdc->get_addr(md); MemoryRegion *mr; /* * We expect that a previous call to memory_device_pre_plug() succeeded, so * it can't fail at this point. */ mr = mdc->get_memory_region(md, &error_abort); g_assert(ms->device_memory); memory_region_add_subregion(&ms->device_memory->mr, addr - ms->device_memory->base, mr); trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); } void memory_device_unplug(MemoryDeviceState *md, MachineState *ms) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); MemoryRegion *mr; /* * We expect that a previous call to memory_device_pre_plug() succeeded, so * it can't fail at this point. */ mr = mdc->get_memory_region(md, &error_abort); g_assert(ms->device_memory); memory_region_del_subregion(&ms->device_memory->mr, mr); trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "", mdc->get_addr(md)); } uint64_t memory_device_get_region_size(const MemoryDeviceState *md, Error **errp) { const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); MemoryRegion *mr; /* dropping const here is fine as we don't touch the memory region */ mr = mdc->get_memory_region((MemoryDeviceState *)md, errp); if (!mr) { return 0; } return memory_region_size(mr); } static const TypeInfo memory_device_info = { .name = TYPE_MEMORY_DEVICE, .parent = TYPE_INTERFACE, .class_size = sizeof(MemoryDeviceClass), }; static void memory_device_register_types(void) { type_register_static(&memory_device_info); } type_init(memory_device_register_types)