/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * PAPR Virtualized Interrupt System, aka ICS/ICP aka xics, in-kernel emulation * * Copyright (c) 2013 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "trace.h" #include "sysemu/kvm.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/ppc/xics.h" #include "hw/ppc/xics_spapr.h" #include "kvm_ppc.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include static int kernel_xics_fd = -1; typedef struct KVMEnabledICP { unsigned long vcpu_id; QLIST_ENTRY(KVMEnabledICP) node; } KVMEnabledICP; static QLIST_HEAD(, KVMEnabledICP) kvm_enabled_icps = QLIST_HEAD_INITIALIZER(&kvm_enabled_icps); static void kvm_disable_icps(void) { KVMEnabledICP *enabled_icp, *next; QLIST_FOREACH_SAFE(enabled_icp, &kvm_enabled_icps, node, next) { QLIST_REMOVE(enabled_icp, node); g_free(enabled_icp); } } /* * ICP-KVM */ void icp_get_kvm_state(ICPState *icp) { uint64_t state; int ret; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return; } /* ICP for this CPU thread is not in use, exiting */ if (!icp->cs) { return; } ret = kvm_get_one_reg(icp->cs, KVM_REG_PPC_ICP_STATE, &state); if (ret != 0) { error_report("Unable to retrieve KVM interrupt controller state" " for CPU %ld: %s", kvm_arch_vcpu_id(icp->cs), strerror(errno)); exit(1); } icp->xirr = state >> KVM_REG_PPC_ICP_XISR_SHIFT; icp->mfrr = (state >> KVM_REG_PPC_ICP_MFRR_SHIFT) & KVM_REG_PPC_ICP_MFRR_MASK; icp->pending_priority = (state >> KVM_REG_PPC_ICP_PPRI_SHIFT) & KVM_REG_PPC_ICP_PPRI_MASK; } static void do_icp_synchronize_state(CPUState *cpu, run_on_cpu_data arg) { icp_get_kvm_state(arg.host_ptr); } void icp_synchronize_state(ICPState *icp) { if (icp->cs) { run_on_cpu(icp->cs, do_icp_synchronize_state, RUN_ON_CPU_HOST_PTR(icp)); } } int icp_set_kvm_state(ICPState *icp, Error **errp) { uint64_t state; int ret; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return 0; } /* ICP for this CPU thread is not in use, exiting */ if (!icp->cs) { return 0; } state = ((uint64_t)icp->xirr << KVM_REG_PPC_ICP_XISR_SHIFT) | ((uint64_t)icp->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) | ((uint64_t)icp->pending_priority << KVM_REG_PPC_ICP_PPRI_SHIFT); ret = kvm_set_one_reg(icp->cs, KVM_REG_PPC_ICP_STATE, &state); if (ret < 0) { error_setg_errno(errp, -ret, "Unable to restore KVM interrupt controller state (0x%" PRIx64 ") for CPU %ld", state, kvm_arch_vcpu_id(icp->cs)); return ret; } return 0; } void icp_kvm_realize(DeviceState *dev, Error **errp) { ICPState *icp = ICP(dev); CPUState *cs; KVMEnabledICP *enabled_icp; unsigned long vcpu_id; int ret; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return; } cs = icp->cs; vcpu_id = kvm_arch_vcpu_id(cs); /* * If we are reusing a parked vCPU fd corresponding to the CPU * which was hot-removed earlier we don't have to renable * KVM_CAP_IRQ_XICS capability again. */ QLIST_FOREACH(enabled_icp, &kvm_enabled_icps, node) { if (enabled_icp->vcpu_id == vcpu_id) { return; } } ret = kvm_vcpu_enable_cap(cs, KVM_CAP_IRQ_XICS, 0, kernel_xics_fd, vcpu_id); if (ret < 0) { Error *local_err = NULL; error_setg(&local_err, "Unable to connect CPU%ld to kernel XICS: %s", vcpu_id, strerror(errno)); if (errno == ENOSPC) { error_append_hint(&local_err, "Try -smp maxcpus=N with N < %u\n", MACHINE(qdev_get_machine())->smp.max_cpus); } error_propagate(errp, local_err); return; } enabled_icp = g_malloc(sizeof(*enabled_icp)); enabled_icp->vcpu_id = vcpu_id; QLIST_INSERT_HEAD(&kvm_enabled_icps, enabled_icp, node); } /* * ICS-KVM */ void ics_get_kvm_state(ICSState *ics) { uint64_t state; int i; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return; } for (i = 0; i < ics->nr_irqs; i++) { ICSIRQState *irq = &ics->irqs[i]; if (ics_irq_free(ics, i)) { continue; } kvm_device_access(kernel_xics_fd, KVM_DEV_XICS_GRP_SOURCES, i + ics->offset, &state, false, &error_fatal); irq->server = state & KVM_XICS_DESTINATION_MASK; irq->saved_priority = (state >> KVM_XICS_PRIORITY_SHIFT) & KVM_XICS_PRIORITY_MASK; /* * To be consistent with the software emulation in xics.c, we * split out the masked state + priority that we get from the * kernel into 'current priority' (0xff if masked) and * 'saved priority' (if masked, this is the priority the * interrupt had before it was masked). Masking and unmasking * are done with the ibm,int-off and ibm,int-on RTAS calls. */ if (state & KVM_XICS_MASKED) { irq->priority = 0xff; } else { irq->priority = irq->saved_priority; } irq->status = 0; if (state & KVM_XICS_PENDING) { if (state & KVM_XICS_LEVEL_SENSITIVE) { irq->status |= XICS_STATUS_ASSERTED; } else { /* * A pending edge-triggered interrupt (or MSI) * must have been rejected previously when we * first detected it and tried to deliver it, * so mark it as pending and previously rejected * for consistency with how xics.c works. */ irq->status |= XICS_STATUS_MASKED_PENDING | XICS_STATUS_REJECTED; } } if (state & KVM_XICS_PRESENTED) { irq->status |= XICS_STATUS_PRESENTED; } if (state & KVM_XICS_QUEUED) { irq->status |= XICS_STATUS_QUEUED; } } } void ics_synchronize_state(ICSState *ics) { ics_get_kvm_state(ics); } int ics_set_kvm_state_one(ICSState *ics, int srcno, Error **errp) { uint64_t state; ICSIRQState *irq = &ics->irqs[srcno]; int ret; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return 0; } state = irq->server; state |= (uint64_t)(irq->saved_priority & KVM_XICS_PRIORITY_MASK) << KVM_XICS_PRIORITY_SHIFT; if (irq->priority != irq->saved_priority) { assert(irq->priority == 0xff); } if (irq->priority == 0xff) { state |= KVM_XICS_MASKED; } if (irq->flags & XICS_FLAGS_IRQ_LSI) { state |= KVM_XICS_LEVEL_SENSITIVE; if (irq->status & XICS_STATUS_ASSERTED) { state |= KVM_XICS_PENDING; } } else { if (irq->status & XICS_STATUS_MASKED_PENDING) { state |= KVM_XICS_PENDING; } } if (irq->status & XICS_STATUS_PRESENTED) { state |= KVM_XICS_PRESENTED; } if (irq->status & XICS_STATUS_QUEUED) { state |= KVM_XICS_QUEUED; } ret = kvm_device_access(kernel_xics_fd, KVM_DEV_XICS_GRP_SOURCES, srcno + ics->offset, &state, true, errp); if (ret < 0) { return ret; } return 0; } int ics_set_kvm_state(ICSState *ics, Error **errp) { int i; /* The KVM XICS device is not in use */ if (kernel_xics_fd == -1) { return 0; } for (i = 0; i < ics->nr_irqs; i++) { Error *local_err = NULL; int ret; if (ics_irq_free(ics, i)) { continue; } ret = ics_set_kvm_state_one(ics, i, &local_err); if (ret < 0) { error_propagate(errp, local_err); return ret; } } return 0; } void ics_kvm_set_irq(ICSState *ics, int srcno, int val) { struct kvm_irq_level args; int rc; /* The KVM XICS device should be in use */ assert(kernel_xics_fd != -1); args.irq = srcno + ics->offset; if (ics->irqs[srcno].flags & XICS_FLAGS_IRQ_MSI) { if (!val) { return; } args.level = KVM_INTERRUPT_SET; } else { args.level = val ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; } rc = kvm_vm_ioctl(kvm_state, KVM_IRQ_LINE, &args); if (rc < 0) { perror("kvm_irq_line"); } } int xics_kvm_connect(SpaprInterruptController *intc, uint32_t nr_servers, Error **errp) { ICSState *ics = ICS_SPAPR(intc); int rc; CPUState *cs; Error *local_err = NULL; /* * The KVM XICS device already in use. This is the case when * rebooting under the XICS-only interrupt mode. */ if (kernel_xics_fd != -1) { return 0; } if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_IRQ_XICS)) { error_setg(errp, "KVM and IRQ_XICS capability must be present for in-kernel XICS"); return -1; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_SET_XIVE, "ibm,set-xive"); if (rc < 0) { error_setg_errno(&local_err, -rc, "kvmppc_define_rtas_kernel_token: ibm,set-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_GET_XIVE, "ibm,get-xive"); if (rc < 0) { error_setg_errno(&local_err, -rc, "kvmppc_define_rtas_kernel_token: ibm,get-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_ON, "ibm,int-on"); if (rc < 0) { error_setg_errno(&local_err, -rc, "kvmppc_define_rtas_kernel_token: ibm,int-on"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_OFF, "ibm,int-off"); if (rc < 0) { error_setg_errno(&local_err, -rc, "kvmppc_define_rtas_kernel_token: ibm,int-off"); goto fail; } /* Create the KVM XICS device */ rc = kvm_create_device(kvm_state, KVM_DEV_TYPE_XICS, false); if (rc < 0) { error_setg_errno(&local_err, -rc, "Error on KVM_CREATE_DEVICE for XICS"); goto fail; } /* Tell KVM about the # of VCPUs we may have (POWER9 and newer only) */ if (kvm_device_check_attr(rc, KVM_DEV_XICS_GRP_CTRL, KVM_DEV_XICS_NR_SERVERS)) { if (kvm_device_access(rc, KVM_DEV_XICS_GRP_CTRL, KVM_DEV_XICS_NR_SERVERS, &nr_servers, true, &local_err)) { goto fail; } } kernel_xics_fd = rc; kvm_kernel_irqchip = true; kvm_msi_via_irqfd_allowed = true; kvm_gsi_direct_mapping = true; /* Create the presenters */ CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_kvm_realize(DEVICE(spapr_cpu_state(cpu)->icp), &local_err); if (local_err) { goto fail; } } /* Update the KVM sources */ ics_set_kvm_state(ics, &local_err); if (local_err) { goto fail; } /* Connect the presenters to the initial VCPUs of the machine */ CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_set_kvm_state(spapr_cpu_state(cpu)->icp, &local_err); if (local_err) { goto fail; } } return 0; fail: error_propagate(errp, local_err); xics_kvm_disconnect(intc); return -1; } void xics_kvm_disconnect(SpaprInterruptController *intc) { /* * Only on P9 using the XICS-on XIVE KVM device: * * When the KVM device fd is closed, the device is destroyed and * removed from the list of devices of the VM. The VCPU presenters * are also detached from the device. */ if (kernel_xics_fd != -1) { close(kernel_xics_fd); kernel_xics_fd = -1; } kvmppc_define_rtas_kernel_token(0, "ibm,set-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,get-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,int-on"); kvmppc_define_rtas_kernel_token(0, "ibm,int-off"); kvm_kernel_irqchip = false; kvm_msi_via_irqfd_allowed = false; kvm_gsi_direct_mapping = false; /* Clear the presenter from the VCPUs */ kvm_disable_icps(); } /* * This is a heuristic to detect older KVMs on POWER9 hosts that don't * support destruction of a KVM XICS device while the VM is running. * Required to start a spapr machine with ic-mode=dual,kernel-irqchip=on. */ bool xics_kvm_has_broken_disconnect(SpaprMachineState *spapr) { int rc; rc = kvm_create_device(kvm_state, KVM_DEV_TYPE_XICS, false); if (rc < 0) { /* * The error is ignored on purpose. The KVM XICS setup code * will catch it again anyway. The goal here is to see if * close() actually destroys the device or not. */ return false; } close(rc); rc = kvm_create_device(kvm_state, KVM_DEV_TYPE_XICS, false); if (rc >= 0) { close(rc); return false; } return errno == EEXIST; }