/* * QEMU PowerPC sPAPR XIVE interrupt controller model * * Copyright (c) 2017-2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "target/ppc/cpu.h" #include "sysemu/cpus.h" #include "sysemu/reset.h" #include "migration/vmstate.h" #include "monitor/monitor.h" #include "hw/ppc/fdt.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/ppc/spapr_xive.h" #include "hw/ppc/xive.h" #include "hw/ppc/xive_regs.h" #include "hw/qdev-properties.h" /* * XIVE Virtualization Controller BAR and Thread Managment BAR that we * use for the ESB pages and the TIMA pages */ #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull /* * The allocation of VP blocks is a complex operation in OPAL and the * VP identifiers have a relation with the number of HW chips, the * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE * controller model does not have the same constraints and can use a * simple mapping scheme of the CPU vcpu_id * * These identifiers are never returned to the OS. */ #define SPAPR_XIVE_NVT_BASE 0x400 /* * sPAPR NVT and END indexing helpers */ static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx) { return nvt_idx - SPAPR_XIVE_NVT_BASE; } static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu, uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) { assert(cpu); if (out_nvt_blk) { *out_nvt_blk = SPAPR_XIVE_BLOCK_ID; } if (out_nvt_blk) { *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id; } } static int spapr_xive_target_to_nvt(uint32_t target, uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) { PowerPCCPU *cpu = spapr_find_cpu(target); if (!cpu) { return -1; } spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx); return 0; } /* * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8 * priorities per CPU */ int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx, uint32_t *out_server, uint8_t *out_prio) { assert(end_blk == SPAPR_XIVE_BLOCK_ID); if (out_server) { *out_server = end_idx >> 3; } if (out_prio) { *out_prio = end_idx & 0x7; } return 0; } static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio, uint8_t *out_end_blk, uint32_t *out_end_idx) { assert(cpu); if (out_end_blk) { *out_end_blk = SPAPR_XIVE_BLOCK_ID; } if (out_end_idx) { *out_end_idx = (cpu->vcpu_id << 3) + prio; } } static int spapr_xive_target_to_end(uint32_t target, uint8_t prio, uint8_t *out_end_blk, uint32_t *out_end_idx) { PowerPCCPU *cpu = spapr_find_cpu(target); if (!cpu) { return -1; } spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx); return 0; } /* * On sPAPR machines, use a simplified output for the XIVE END * structure dumping only the information related to the OS EQ. */ static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end, Monitor *mon) { uint64_t qaddr_base = xive_end_qaddr(end); uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); uint32_t qentries = 1 << (qsize + 10); uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d", spapr_xive_nvt_to_target(0, nvt), priority, qindex, qentries, qaddr_base, qgen); xive_end_queue_pic_print_info(end, 6, mon); } void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon) { XiveSource *xsrc = &xive->source; int i; if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_synchronize_state(xive, &local_err); if (local_err) { error_report_err(local_err); return; } } monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n"); for (i = 0; i < xive->nr_irqs; i++) { uint8_t pq = xive_source_esb_get(xsrc, i); XiveEAS *eas = &xive->eat[i]; if (!xive_eas_is_valid(eas)) { continue; } monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i, xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", pq & XIVE_ESB_VAL_P ? 'P' : '-', pq & XIVE_ESB_VAL_Q ? 'Q' : '-', xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ', xive_eas_is_masked(eas) ? "M" : " ", (int) xive_get_field64(EAS_END_DATA, eas->w)); if (!xive_eas_is_masked(eas)) { uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); XiveEND *end; assert(end_idx < xive->nr_ends); end = &xive->endt[end_idx]; if (xive_end_is_valid(end)) { spapr_xive_end_pic_print_info(xive, end, mon); } } monitor_printf(mon, "\n"); } } void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable) { memory_region_set_enabled(&xive->source.esb_mmio, enable); memory_region_set_enabled(&xive->tm_mmio, enable); /* Disable the END ESBs until a guest OS makes use of them */ memory_region_set_enabled(&xive->end_source.esb_mmio, false); } static void spapr_xive_tm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size); } static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size) { XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx; return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size); } const MemoryRegionOps spapr_xive_tm_ops = { .read = spapr_xive_tm_read, .write = spapr_xive_tm_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static void spapr_xive_end_reset(XiveEND *end) { memset(end, 0, sizeof(*end)); /* switch off the escalation and notification ESBs */ end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q); } static void spapr_xive_reset(void *dev) { SpaprXive *xive = SPAPR_XIVE(dev); int i; /* * The XiveSource has its own reset handler, which mask off all * IRQs (!P|Q) */ /* Mask all valid EASs in the IRQ number space. */ for (i = 0; i < xive->nr_irqs; i++) { XiveEAS *eas = &xive->eat[i]; if (xive_eas_is_valid(eas)) { eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED); } else { eas->w = 0; } } /* Clear all ENDs */ for (i = 0; i < xive->nr_ends; i++) { spapr_xive_end_reset(&xive->endt[i]); } } static void spapr_xive_instance_init(Object *obj) { SpaprXive *xive = SPAPR_XIVE(obj); object_initialize_child(obj, "source", &xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE, &error_abort, NULL); object_initialize_child(obj, "end_source", &xive->end_source, sizeof(xive->end_source), TYPE_XIVE_END_SOURCE, &error_abort, NULL); /* Not connected to the KVM XIVE device */ xive->fd = -1; } static void spapr_xive_realize(DeviceState *dev, Error **errp) { SpaprXive *xive = SPAPR_XIVE(dev); SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive); XiveSource *xsrc = &xive->source; XiveENDSource *end_xsrc = &xive->end_source; Error *local_err = NULL; sxc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (!xive->nr_irqs) { error_setg(errp, "Number of interrupt needs to be greater 0"); return; } if (!xive->nr_ends) { error_setg(errp, "Number of interrupt needs to be greater 0"); return; } /* * Initialize the internal sources, for IPIs and virtual devices. */ object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs", &error_fatal); object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive", &error_abort); object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio); /* * Initialize the END ESB source */ object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends", &error_fatal); object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive", &error_abort); object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio); /* Set the mapping address of the END ESB pages after the source ESBs */ xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs; /* * Allocate the routing tables */ xive->eat = g_new0(XiveEAS, xive->nr_irqs); xive->endt = g_new0(XiveEND, xive->nr_ends); xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64, xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT)); qemu_register_reset(spapr_xive_reset, dev); /* TIMA initialization */ memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops, xive, "xive.tima", 4ull << TM_SHIFT); sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio); /* * Map all regions. These will be enabled or disabled at reset and * can also be overridden by KVM memory regions if active */ sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base); sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base); sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base); } static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, XiveEAS *eas) { SpaprXive *xive = SPAPR_XIVE(xrtr); if (eas_idx >= xive->nr_irqs) { return -1; } *eas = xive->eat[eas_idx]; return 0; } static int spapr_xive_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, XiveEND *end) { SpaprXive *xive = SPAPR_XIVE(xrtr); if (end_idx >= xive->nr_ends) { return -1; } memcpy(end, &xive->endt[end_idx], sizeof(XiveEND)); return 0; } static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, XiveEND *end, uint8_t word_number) { SpaprXive *xive = SPAPR_XIVE(xrtr); if (end_idx >= xive->nr_ends) { return -1; } memcpy(&xive->endt[end_idx], end, sizeof(XiveEND)); return 0; } static int spapr_xive_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) { uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); if (!cpu) { /* TODO: should we assert() if we can find a NVT ? */ return -1; } /* * sPAPR does not maintain a NVT table. Return that the NVT is * valid if we have found a matching CPU */ nvt->w0 = cpu_to_be32(NVT_W0_VALID); return 0; } static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt, uint8_t word_number) { /* * We don't need to write back to the NVTs because the sPAPR * machine should never hit a non-scheduled NVT. It should never * get called. */ g_assert_not_reached(); } static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { CPUState *cs; int count = 0; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; int ring; /* * Skip partially initialized vCPUs. This can happen when * vCPUs are hotplugged. */ if (!tctx) { continue; } /* * Check the thread context CAM lines and record matches. */ ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, cam_ignore, logic_serv); /* * Save the matching thread interrupt context and follow on to * check for duplicates which are invalid. */ if (ring != -1) { if (match->tctx) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " "context NVT %x/%x\n", nvt_blk, nvt_idx); return -1; } match->ring = ring; match->tctx = tctx; count++; } } return count; } static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr) { return SPAPR_XIVE_BLOCK_ID; } static const VMStateDescription vmstate_spapr_xive_end = { .name = TYPE_SPAPR_XIVE "/end", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT32(w0, XiveEND), VMSTATE_UINT32(w1, XiveEND), VMSTATE_UINT32(w2, XiveEND), VMSTATE_UINT32(w3, XiveEND), VMSTATE_UINT32(w4, XiveEND), VMSTATE_UINT32(w5, XiveEND), VMSTATE_UINT32(w6, XiveEND), VMSTATE_UINT32(w7, XiveEND), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_spapr_xive_eas = { .name = TYPE_SPAPR_XIVE "/eas", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT64(w, XiveEAS), VMSTATE_END_OF_LIST() }, }; static int vmstate_spapr_xive_pre_save(void *opaque) { if (kvm_irqchip_in_kernel()) { return kvmppc_xive_pre_save(SPAPR_XIVE(opaque)); } return 0; } /* * Called by the sPAPR IRQ backend 'post_load' method at the machine * level. */ static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id) { if (kvm_irqchip_in_kernel()) { return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id); } return 0; } static const VMStateDescription vmstate_spapr_xive = { .name = TYPE_SPAPR_XIVE, .version_id = 1, .minimum_version_id = 1, .pre_save = vmstate_spapr_xive_pre_save, .post_load = NULL, /* handled at the machine level */ .fields = (VMStateField[]) { VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL), VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs, vmstate_spapr_xive_eas, XiveEAS), VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends, vmstate_spapr_xive_end, XiveEND), VMSTATE_END_OF_LIST() }, }; static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn, bool lsi, Error **errp) { SpaprXive *xive = SPAPR_XIVE(intc); XiveSource *xsrc = &xive->source; assert(lisn < xive->nr_irqs); if (xive_eas_is_valid(&xive->eat[lisn])) { error_setg(errp, "IRQ %d is not free", lisn); return -EBUSY; } /* * Set default values when allocating an IRQ number */ xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED); if (lsi) { xive_source_irq_set_lsi(xsrc, lisn); } if (kvm_irqchip_in_kernel()) { return kvmppc_xive_source_reset_one(xsrc, lisn, errp); } return 0; } static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn) { SpaprXive *xive = SPAPR_XIVE(intc); assert(lisn < xive->nr_irqs); xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID); } static Property spapr_xive_properties[] = { DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0), DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0), DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE), DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE), DEFINE_PROP_END_OF_LIST(), }; static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc, PowerPCCPU *cpu, Error **errp) { SpaprXive *xive = SPAPR_XIVE(intc); Object *obj; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp); if (!obj) { return -1; } spapr_cpu->tctx = XIVE_TCTX(obj); return 0; } static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam) { uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam); memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); } static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc, PowerPCCPU *cpu) { XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx; uint8_t nvt_blk; uint32_t nvt_idx; xive_tctx_reset(tctx); /* * When a Virtual Processor is scheduled to run on a HW thread, * the hypervisor pushes its identifier in the OS CAM line. * Emulate the same behavior under QEMU. */ spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx); xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx)); } static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc, PowerPCCPU *cpu) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); xive_tctx_destroy(spapr_cpu->tctx); spapr_cpu->tctx = NULL; } static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val) { SpaprXive *xive = SPAPR_XIVE(intc); if (kvm_irqchip_in_kernel()) { kvmppc_xive_source_set_irq(&xive->source, irq, val); } else { xive_source_set_irq(&xive->source, irq, val); } } static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon) { SpaprXive *xive = SPAPR_XIVE(intc); CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon); } spapr_xive_pic_print_info(xive, mon); } static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers, void *fdt, uint32_t phandle) { SpaprXive *xive = SPAPR_XIVE(intc); int node; uint64_t timas[2 * 2]; /* Interrupt number ranges for the IPIs */ uint32_t lisn_ranges[] = { cpu_to_be32(SPAPR_IRQ_IPI), cpu_to_be32(SPAPR_IRQ_IPI + nr_servers), }; /* * EQ size - the sizes of pages supported by the system 4K, 64K, * 2M, 16M. We only advertise 64K for the moment. */ uint32_t eq_sizes[] = { cpu_to_be32(16), /* 64K */ }; /* * The following array is in sync with the reserved priorities * defined by the 'spapr_xive_priority_is_reserved' routine. */ uint32_t plat_res_int_priorities[] = { cpu_to_be32(7), /* start */ cpu_to_be32(0xf8), /* count */ }; /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */ timas[0] = cpu_to_be64(xive->tm_base + XIVE_TM_USER_PAGE * (1ull << TM_SHIFT)); timas[1] = cpu_to_be64(1ull << TM_SHIFT); timas[2] = cpu_to_be64(xive->tm_base + XIVE_TM_OS_PAGE * (1ull << TM_SHIFT)); timas[3] = cpu_to_be64(1ull << TM_SHIFT); _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename)); _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe")); _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas))); _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe")); _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes, sizeof(eq_sizes))); _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges, sizeof(lisn_ranges))); /* For Linux to link the LSIs to the interrupt controller. */ _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0)); _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2)); /* For SLOF */ _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle)); _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle)); /* * The "ibm,plat-res-int-priorities" property defines the priority * ranges reserved by the hypervisor */ _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities", plat_res_int_priorities, sizeof(plat_res_int_priorities))); } static int spapr_xive_activate(SpaprInterruptController *intc, uint32_t nr_servers, Error **errp) { SpaprXive *xive = SPAPR_XIVE(intc); if (kvm_enabled()) { int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers, errp); if (rc < 0) { return rc; } } /* Activate the XIVE MMIOs */ spapr_xive_mmio_set_enabled(xive, true); return 0; } static void spapr_xive_deactivate(SpaprInterruptController *intc) { SpaprXive *xive = SPAPR_XIVE(intc); spapr_xive_mmio_set_enabled(xive, false); if (kvm_irqchip_in_kernel()) { kvmppc_xive_disconnect(intc); } } static void spapr_xive_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass); XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass); dc->desc = "sPAPR XIVE Interrupt Controller"; device_class_set_props(dc, spapr_xive_properties); device_class_set_parent_realize(dc, spapr_xive_realize, &sxc->parent_realize); dc->vmsd = &vmstate_spapr_xive; xrc->get_eas = spapr_xive_get_eas; xrc->get_end = spapr_xive_get_end; xrc->write_end = spapr_xive_write_end; xrc->get_nvt = spapr_xive_get_nvt; xrc->write_nvt = spapr_xive_write_nvt; xrc->get_block_id = spapr_xive_get_block_id; sicc->activate = spapr_xive_activate; sicc->deactivate = spapr_xive_deactivate; sicc->cpu_intc_create = spapr_xive_cpu_intc_create; sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset; sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy; sicc->claim_irq = spapr_xive_claim_irq; sicc->free_irq = spapr_xive_free_irq; sicc->set_irq = spapr_xive_set_irq; sicc->print_info = spapr_xive_print_info; sicc->dt = spapr_xive_dt; sicc->post_load = spapr_xive_post_load; xpc->match_nvt = spapr_xive_match_nvt; } static const TypeInfo spapr_xive_info = { .name = TYPE_SPAPR_XIVE, .parent = TYPE_XIVE_ROUTER, .instance_init = spapr_xive_instance_init, .instance_size = sizeof(SpaprXive), .class_init = spapr_xive_class_init, .class_size = sizeof(SpaprXiveClass), .interfaces = (InterfaceInfo[]) { { TYPE_SPAPR_INTC }, { } }, }; static void spapr_xive_register_types(void) { type_register_static(&spapr_xive_info); } type_init(spapr_xive_register_types) /* * XIVE hcalls * * The terminology used by the XIVE hcalls is the following : * * TARGET vCPU number * EQ Event Queue assigned by OS to receive event data * ESB page for source interrupt management * LISN Logical Interrupt Source Number identifying a source in the * machine * EISN Effective Interrupt Source Number used by guest OS to * identify source in the guest * * The EAS, END, NVT structures are not exposed. */ /* * Linux hosts under OPAL reserve priority 7 for their own escalation * interrupts (DD2.X POWER9). So we only allow the guest to use * priorities [0..6]. */ static bool spapr_xive_priority_is_reserved(uint8_t priority) { switch (priority) { case 0 ... 6: return false; case 7: /* OPAL escalation queue */ default: return true; } } /* * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical * real address of the MMIO page through which the Event State Buffer * entry associated with the value of the "lisn" parameter is managed. * * Parameters: * Input * - R4: "flags" * Bits 0-63 reserved * - R5: "lisn" is per "interrupts", "interrupt-map", or * "ibm,xive-lisn-ranges" properties, or as returned by the * ibm,query-interrupt-source-number RTAS call, or as returned * by the H_ALLOCATE_VAS_WINDOW hcall * * Output * - R4: "flags" * Bits 0-59: Reserved * Bit 60: H_INT_ESB must be used for Event State Buffer * management * Bit 61: 1 == LSI 0 == MSI * Bit 62: the full function page supports trigger * Bit 63: Store EOI Supported * - R5: Logical Real address of full function Event State Buffer * management page, -1 if H_INT_ESB hcall flag is set to 1. * - R6: Logical Real Address of trigger only Event State Buffer * management page or -1. * - R7: Power of 2 page size for the ESB management pages returned in * R5 and R6. */ #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */ #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */ #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management on same page */ #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */ static target_ulong h_int_get_source_info(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; XiveSource *xsrc = &xive->source; target_ulong flags = args[0]; target_ulong lisn = args[1]; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags) { return H_PARAMETER; } if (lisn >= xive->nr_irqs) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } if (!xive_eas_is_valid(&xive->eat[lisn])) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } /* * All sources are emulated under the main XIVE object and share * the same characteristics. */ args[0] = 0; if (!xive_source_esb_has_2page(xsrc)) { args[0] |= SPAPR_XIVE_SRC_TRIGGER; } if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) { args[0] |= SPAPR_XIVE_SRC_STORE_EOI; } /* * Force the use of the H_INT_ESB hcall in case of an LSI * interrupt. This is necessary under KVM to re-trigger the * interrupt if the level is still asserted */ if (xive_source_irq_is_lsi(xsrc, lisn)) { args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI; } if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn); } else { args[1] = -1; } if (xive_source_esb_has_2page(xsrc) && !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn); } else { args[2] = -1; } if (xive_source_esb_has_2page(xsrc)) { args[3] = xsrc->esb_shift - 1; } else { args[3] = xsrc->esb_shift; } return H_SUCCESS; } /* * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical * Interrupt Source to a target. The Logical Interrupt Source is * designated with the "lisn" parameter and the target is designated * with the "target" and "priority" parameters. Upon return from the * hcall(), no additional interrupts will be directed to the old EQ. * * Parameters: * Input: * - R4: "flags" * Bits 0-61: Reserved * Bit 62: set the "eisn" in the EAS * Bit 63: masks the interrupt source in the hardware interrupt * control structure. An interrupt masked by this mechanism will * be dropped, but it's source state bits will still be * set. There is no race-free way of unmasking and restoring the * source. Thus this should only be used in interrupts that are * also masked at the source, and only in cases where the * interrupt is not meant to be used for a large amount of time * because no valid target exists for it for example * - R5: "lisn" is per "interrupts", "interrupt-map", or * "ibm,xive-lisn-ranges" properties, or as returned by the * ibm,query-interrupt-source-number RTAS call, or as returned by * the H_ALLOCATE_VAS_WINDOW hcall * - R6: "target" is per "ibm,ppc-interrupt-server#s" or * "ibm,ppc-interrupt-gserver#s" * - R7: "priority" is a valid priority not in * "ibm,plat-res-int-priorities" * - R8: "eisn" is the guest EISN associated with the "lisn" * * Output: * - None */ #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62) #define SPAPR_XIVE_SRC_MASK PPC_BIT(63) static target_ulong h_int_set_source_config(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; XiveEAS eas, new_eas; target_ulong flags = args[0]; target_ulong lisn = args[1]; target_ulong target = args[2]; target_ulong priority = args[3]; target_ulong eisn = args[4]; uint8_t end_blk; uint32_t end_idx; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) { return H_PARAMETER; } if (lisn >= xive->nr_irqs) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } eas = xive->eat[lisn]; if (!xive_eas_is_valid(&eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } /* priority 0xff is used to reset the EAS */ if (priority == 0xff) { new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED); goto out; } if (flags & SPAPR_XIVE_SRC_MASK) { new_eas.w = eas.w | cpu_to_be64(EAS_MASKED); } else { new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED); } if (spapr_xive_priority_is_reserved(priority)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld " is reserved\n", priority); return H_P4; } /* * Validate that "target" is part of the list of threads allocated * to the partition. For that, find the END corresponding to the * target. */ if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { return H_P3; } new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); if (flags & SPAPR_XIVE_SRC_SET_EISN) { new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn); } if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } } out: xive->eat[lisn] = new_eas; return H_SUCCESS; } /* * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which * target/priority pair is assigned to the specified Logical Interrupt * Source. * * Parameters: * Input: * - R4: "flags" * Bits 0-63 Reserved * - R5: "lisn" is per "interrupts", "interrupt-map", or * "ibm,xive-lisn-ranges" properties, or as returned by the * ibm,query-interrupt-source-number RTAS call, or as * returned by the H_ALLOCATE_VAS_WINDOW hcall * * Output: * - R4: Target to which the specified Logical Interrupt Source is * assigned * - R5: Priority to which the specified Logical Interrupt Source is * assigned * - R6: EISN for the specified Logical Interrupt Source (this will be * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG) */ static target_ulong h_int_get_source_config(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; target_ulong flags = args[0]; target_ulong lisn = args[1]; XiveEAS eas; XiveEND *end; uint8_t nvt_blk; uint32_t end_idx, nvt_idx; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags) { return H_PARAMETER; } if (lisn >= xive->nr_irqs) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } eas = xive->eat[lisn]; if (!xive_eas_is_valid(&eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } /* EAS_END_BLOCK is unused on sPAPR */ end_idx = xive_get_field64(EAS_END_INDEX, eas.w); assert(end_idx < xive->nr_ends); end = &xive->endt[end_idx]; nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); if (xive_eas_is_masked(&eas)) { args[1] = 0xff; } else { args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7); } args[2] = xive_get_field64(EAS_END_DATA, eas.w); return H_SUCCESS; } /* * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real * address of the notification management page associated with the * specified target and priority. * * Parameters: * Input: * - R4: "flags" * Bits 0-63 Reserved * - R5: "target" is per "ibm,ppc-interrupt-server#s" or * "ibm,ppc-interrupt-gserver#s" * - R6: "priority" is a valid priority not in * "ibm,plat-res-int-priorities" * * Output: * - R4: Logical real address of notification page * - R5: Power of 2 page size of the notification page */ static target_ulong h_int_get_queue_info(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; XiveENDSource *end_xsrc = &xive->end_source; target_ulong flags = args[0]; target_ulong target = args[1]; target_ulong priority = args[2]; XiveEND *end; uint8_t end_blk; uint32_t end_idx; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags) { return H_PARAMETER; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ if (spapr_xive_priority_is_reserved(priority)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld " is reserved\n", priority); return H_P3; } /* * Validate that "target" is part of the list of threads allocated * to the partition. For that, find the END corresponding to the * target. */ if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { return H_P2; } assert(end_idx < xive->nr_ends); end = &xive->endt[end_idx]; args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx; if (xive_end_is_enqueue(end)) { args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; } else { args[1] = 0; } return H_SUCCESS; } /* * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for * a given "target" and "priority". It is also used to set the * notification config associated with the EQ. An EQ size of 0 is * used to reset the EQ config for a given target and priority. If * resetting the EQ config, the END associated with the given "target" * and "priority" will be changed to disable queueing. * * Upon return from the hcall(), no additional interrupts will be * directed to the old EQ (if one was set). The old EQ (if one was * set) should be investigated for interrupts that occurred prior to * or during the hcall(). * * Parameters: * Input: * - R4: "flags" * Bits 0-62: Reserved * Bit 63: Unconditional Notify (n) per the XIVE spec * - R5: "target" is per "ibm,ppc-interrupt-server#s" or * "ibm,ppc-interrupt-gserver#s" * - R6: "priority" is a valid priority not in * "ibm,plat-res-int-priorities" * - R7: "eventQueue": The logical real address of the start of the EQ * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes" * * Output: * - None */ #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63) static target_ulong h_int_set_queue_config(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; target_ulong flags = args[0]; target_ulong target = args[1]; target_ulong priority = args[2]; target_ulong qpage = args[3]; target_ulong qsize = args[4]; XiveEND end; uint8_t end_blk, nvt_blk; uint32_t end_idx, nvt_idx; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) { return H_PARAMETER; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ if (spapr_xive_priority_is_reserved(priority)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld " is reserved\n", priority); return H_P3; } /* * Validate that "target" is part of the list of threads allocated * to the partition. For that, find the END corresponding to the * target. */ if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { return H_P2; } assert(end_idx < xive->nr_ends); memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND)); switch (qsize) { case 12: case 16: case 21: case 24: if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx " is not naturally aligned with %" HWADDR_PRIx "\n", qpage, (hwaddr)1 << qsize); return H_P4; } end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff); end.w3 = cpu_to_be32(qpage & 0xffffffff); end.w0 |= cpu_to_be32(END_W0_ENQUEUE); end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12); break; case 0: /* reset queue and disable queueing */ spapr_xive_end_reset(&end); goto out; default: qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n", qsize); return H_P5; } if (qsize) { hwaddr plen = 1 << qsize; void *eq; /* * Validate the guest EQ. We should also check that the queue * has been zeroed by the OS. */ eq = address_space_map(CPU(cpu)->as, qpage, &plen, true, MEMTXATTRS_UNSPECIFIED); if (plen != 1 << qsize) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%" HWADDR_PRIx "\n", qpage); return H_P4; } address_space_unmap(CPU(cpu)->as, eq, plen, true, plen); } /* "target" should have been validated above */ if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) { g_assert_not_reached(); } /* * Ensure the priority and target are correctly set (they will not * be right after allocation) */ end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) | xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx); end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority); if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) { end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY); } else { end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY); } /* * The generation bit for the END starts at 1 and The END page * offset counter starts at 0. */ end.w1 = cpu_to_be32(END_W1_GENERATION) | xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul); end.w0 |= cpu_to_be32(END_W0_VALID); /* * TODO: issue syncs required to ensure all in-flight interrupts * are complete on the old END */ out: if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } } /* Update END */ memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND)); return H_SUCCESS; } /* * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given * target and priority. * * Parameters: * Input: * - R4: "flags" * Bits 0-62: Reserved * Bit 63: Debug: Return debug data * - R5: "target" is per "ibm,ppc-interrupt-server#s" or * "ibm,ppc-interrupt-gserver#s" * - R6: "priority" is a valid priority not in * "ibm,plat-res-int-priorities" * * Output: * - R4: "flags": * Bits 0-61: Reserved * Bit 62: The value of Event Queue Generation Number (g) per * the XIVE spec if "Debug" = 1 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec * - R5: The logical real address of the start of the EQ * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes" * - R7: The value of Event Queue Offset Counter per XIVE spec * if "Debug" = 1, else 0 * */ #define SPAPR_XIVE_END_DEBUG PPC_BIT(63) static target_ulong h_int_get_queue_config(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; target_ulong flags = args[0]; target_ulong target = args[1]; target_ulong priority = args[2]; XiveEND *end; uint8_t end_blk; uint32_t end_idx; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags & ~SPAPR_XIVE_END_DEBUG) { return H_PARAMETER; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ if (spapr_xive_priority_is_reserved(priority)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld " is reserved\n", priority); return H_P3; } /* * Validate that "target" is part of the list of threads allocated * to the partition. For that, find the END corresponding to the * target. */ if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { return H_P2; } assert(end_idx < xive->nr_ends); end = &xive->endt[end_idx]; args[0] = 0; if (xive_end_is_notify(end)) { args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY; } if (xive_end_is_enqueue(end)) { args[1] = xive_end_qaddr(end); args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; } else { args[1] = 0; args[2] = 0; } if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } } /* TODO: do we need any locking on the END ? */ if (flags & SPAPR_XIVE_END_DEBUG) { /* Load the event queue generation number into the return flags */ args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62; /* Load R7 with the event queue offset counter */ args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1); } else { args[3] = 0; } return H_SUCCESS; } /* * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the * reporting cache line pair for the calling thread. The reporting * cache lines will contain the OS interrupt context when the OS * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS * interrupt. The reporting cache lines can be reset by inputting -1 * in "reportingLine". Issuing the CI store byte without reporting * cache lines registered will result in the data not being accessible * to the OS. * * Parameters: * Input: * - R4: "flags" * Bits 0-63: Reserved * - R5: "reportingLine": The logical real address of the reporting cache * line pair * * Output: * - None */ static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ /* TODO: H_INT_SET_OS_REPORTING_LINE */ return H_FUNCTION; } /* * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical * real address of the reporting cache line pair set for the input * "target". If no reporting cache line pair has been set, -1 is * returned. * * Parameters: * Input: * - R4: "flags" * Bits 0-63: Reserved * - R5: "target" is per "ibm,ppc-interrupt-server#s" or * "ibm,ppc-interrupt-gserver#s" * - R6: "reportingLine": The logical real address of the reporting * cache line pair * * Output: * - R4: The logical real address of the reporting line if set, else -1 */ static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ /* TODO: H_INT_GET_OS_REPORTING_LINE */ return H_FUNCTION; } /* * The H_INT_ESB hcall() is used to issue a load or store to the ESB * page for the input "lisn". This hcall is only supported for LISNs * that have the ESB hcall flag set to 1 when returned from hcall() * H_INT_GET_SOURCE_INFO. * * Parameters: * Input: * - R4: "flags" * Bits 0-62: Reserved * bit 63: Store: Store=1, store operation, else load operation * - R5: "lisn" is per "interrupts", "interrupt-map", or * "ibm,xive-lisn-ranges" properties, or as returned by the * ibm,query-interrupt-source-number RTAS call, or as * returned by the H_ALLOCATE_VAS_WINDOW hcall * - R6: "esbOffset" is the offset into the ESB page for the load or * store operation * - R7: "storeData" is the data to write for a store operation * * Output: * - R4: The value of the load if load operation, else -1 */ #define SPAPR_XIVE_ESB_STORE PPC_BIT(63) static target_ulong h_int_esb(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; XiveEAS eas; target_ulong flags = args[0]; target_ulong lisn = args[1]; target_ulong offset = args[2]; target_ulong data = args[3]; hwaddr mmio_addr; XiveSource *xsrc = &xive->source; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags & ~SPAPR_XIVE_ESB_STORE) { return H_PARAMETER; } if (lisn >= xive->nr_irqs) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } eas = xive->eat[lisn]; if (!xive_eas_is_valid(&eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } if (offset > (1ull << xsrc->esb_shift)) { return H_P3; } if (kvm_irqchip_in_kernel()) { args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data, flags & SPAPR_XIVE_ESB_STORE); } else { mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset; if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8, (flags & SPAPR_XIVE_ESB_STORE))) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%" HWADDR_PRIx "\n", mmio_addr); return H_HARDWARE; } args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data; } return H_SUCCESS; } /* * The H_INT_SYNC hcall() is used to issue hardware syncs that will * ensure any in flight events for the input lisn are in the event * queue. * * Parameters: * Input: * - R4: "flags" * Bits 0-63: Reserved * - R5: "lisn" is per "interrupts", "interrupt-map", or * "ibm,xive-lisn-ranges" properties, or as returned by the * ibm,query-interrupt-source-number RTAS call, or as * returned by the H_ALLOCATE_VAS_WINDOW hcall * * Output: * - None */ static target_ulong h_int_sync(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; XiveEAS eas; target_ulong flags = args[0]; target_ulong lisn = args[1]; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags) { return H_PARAMETER; } if (lisn >= xive->nr_irqs) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } eas = xive->eat[lisn]; if (!xive_eas_is_valid(&eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n", lisn); return H_P2; } /* * H_STATE should be returned if a H_INT_RESET is in progress. * This is not needed when running the emulation under QEMU */ /* * This is not real hardware. Nothing to be done unless when * under KVM */ if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_sync_source(xive, lisn, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } } return H_SUCCESS; } /* * The H_INT_RESET hcall() is used to reset all of the partition's * interrupt exploitation structures to their initial state. This * means losing all previously set interrupt state set via * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG. * * Parameters: * Input: * - R4: "flags" * Bits 0-63: Reserved * * Output: * - None */ static target_ulong h_int_reset(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { SpaprXive *xive = spapr->xive; target_ulong flags = args[0]; if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { return H_FUNCTION; } if (flags) { return H_PARAMETER; } device_legacy_reset(DEVICE(xive)); if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_reset(xive, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } } return H_SUCCESS; } void spapr_xive_hcall_init(SpaprMachineState *spapr) { spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info); spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config); spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config); spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info); spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config); spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config); spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE, h_int_set_os_reporting_line); spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE, h_int_get_os_reporting_line); spapr_register_hypercall(H_INT_ESB, h_int_esb); spapr_register_hypercall(H_INT_SYNC, h_int_sync); spapr_register_hypercall(H_INT_RESET, h_int_reset); }