/* * ARM Generic/Distributed Interrupt Controller * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ /* This file contains implementation code for the RealView EB interrupt * controller, MPCore distributed interrupt controller and ARMv7-M * Nested Vectored Interrupt Controller. * It is compiled in two ways: * (1) as a standalone file to produce a sysbus device which is a GIC * that can be used on the realview board and as one of the builtin * private peripherals for the ARM MP CPUs (11MPCore, A9, etc) * (2) by being directly #included into armv7m_nvic.c to produce the * armv7m_nvic device. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/sysbus.h" #include "gic_internal.h" #include "qapi/error.h" #include "hw/core/cpu.h" #include "qemu/log.h" #include "qemu/module.h" #include "trace.h" #include "sysemu/kvm.h" /* #define DEBUG_GIC */ #ifdef DEBUG_GIC #define DEBUG_GIC_GATE 1 #else #define DEBUG_GIC_GATE 0 #endif #define DPRINTF(fmt, ...) do { \ if (DEBUG_GIC_GATE) { \ fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ } \ } while (0) static const uint8_t gic_id_11mpcore[] = { 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 }; static const uint8_t gic_id_gicv1[] = { 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1 }; static const uint8_t gic_id_gicv2[] = { 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1 }; static inline int gic_get_current_cpu(GICState *s) { if (s->num_cpu > 1) { return current_cpu->cpu_index; } return 0; } static inline int gic_get_current_vcpu(GICState *s) { return gic_get_current_cpu(s) + GIC_NCPU; } /* Return true if this GIC config has interrupt groups, which is * true if we're a GICv2, or a GICv1 with the security extensions. */ static inline bool gic_has_groups(GICState *s) { return s->revision == 2 || s->security_extn; } static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs) { return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure; } static inline void gic_get_best_irq(GICState *s, int cpu, int *best_irq, int *best_prio, int *group) { int irq; int cm = 1 << cpu; *best_irq = 1023; *best_prio = 0x100; for (irq = 0; irq < s->num_irq; irq++) { if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) && (!GIC_DIST_TEST_ACTIVE(irq, cm)) && (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) { if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) { *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu); *best_irq = irq; } } } if (*best_irq < 1023) { *group = GIC_DIST_TEST_GROUP(*best_irq, cm); } } static inline void gic_get_best_virq(GICState *s, int cpu, int *best_irq, int *best_prio, int *group) { int lr_idx = 0; *best_irq = 1023; *best_prio = 0x100; for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) { uint32_t lr_entry = s->h_lr[lr_idx][cpu]; int state = GICH_LR_STATE(lr_entry); if (state == GICH_LR_STATE_PENDING) { int prio = GICH_LR_PRIORITY(lr_entry); if (prio < *best_prio) { *best_prio = prio; *best_irq = GICH_LR_VIRT_ID(lr_entry); *group = GICH_LR_GROUP(lr_entry); } } } } /* Return true if IRQ signaling is enabled for the given cpu and at least one * of the given groups: * - in the non-virt case, the distributor must be enabled for one of the * given groups * - in the virt case, the virtual interface must be enabled. * - in all cases, the (v)CPU interface must be enabled for one of the given * groups. */ static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt, int group_mask) { if (!virt && !(s->ctlr & group_mask)) { return false; } if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) { return false; } if (!(s->cpu_ctlr[cpu] & group_mask)) { return false; } return true; } /* TODO: Many places that call this routine could be optimized. */ /* Update interrupt status after enabled or pending bits have been changed. */ static inline void gic_update_internal(GICState *s, bool virt) { int best_irq; int best_prio; int irq_level, fiq_level; int cpu, cpu_iface; int group = 0; qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq; qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq; for (cpu = 0; cpu < s->num_cpu; cpu++) { cpu_iface = virt ? (cpu + GIC_NCPU) : cpu; s->current_pending[cpu_iface] = 1023; if (!gic_irq_signaling_enabled(s, cpu, virt, GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) { qemu_irq_lower(irq_lines[cpu]); qemu_irq_lower(fiq_lines[cpu]); continue; } if (virt) { gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group); } else { gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group); } if (best_irq != 1023) { trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu, best_irq, best_prio, s->priority_mask[cpu_iface], s->running_priority[cpu_iface]); } irq_level = fiq_level = 0; if (best_prio < s->priority_mask[cpu_iface]) { s->current_pending[cpu_iface] = best_irq; if (best_prio < s->running_priority[cpu_iface]) { if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) { if (group == 0 && s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) { DPRINTF("Raised pending FIQ %d (cpu %d)\n", best_irq, cpu_iface); fiq_level = 1; trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq", fiq_level); } else { DPRINTF("Raised pending IRQ %d (cpu %d)\n", best_irq, cpu_iface); irq_level = 1; trace_gic_update_set_irq(cpu, virt ? "virq" : "irq", irq_level); } } } } qemu_set_irq(irq_lines[cpu], irq_level); qemu_set_irq(fiq_lines[cpu], fiq_level); } } static void gic_update(GICState *s) { gic_update_internal(s, false); } /* Return true if this LR is empty, i.e. the corresponding bit * in ELRSR is set. */ static inline bool gic_lr_entry_is_free(uint32_t entry) { return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID) && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry)); } /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the * corrsponding bit in EISR is set. */ static inline bool gic_lr_entry_is_eoi(uint32_t entry) { return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID) && !GICH_LR_HW(entry) && GICH_LR_EOI(entry); } static inline void gic_extract_lr_info(GICState *s, int cpu, int *num_eoi, int *num_valid, int *num_pending) { int lr_idx; *num_eoi = 0; *num_valid = 0; *num_pending = 0; for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) { uint32_t *entry = &s->h_lr[lr_idx][cpu]; if (gic_lr_entry_is_eoi(*entry)) { (*num_eoi)++; } if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) { (*num_valid)++; } if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) { (*num_pending)++; } } } static void gic_compute_misr(GICState *s, int cpu) { uint32_t value = 0; int vcpu = cpu + GIC_NCPU; int num_eoi, num_valid, num_pending; gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending); /* EOI */ if (num_eoi) { value |= R_GICH_MISR_EOI_MASK; } /* U: true if only 0 or 1 LR entry is valid */ if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) { value |= R_GICH_MISR_U_MASK; } /* LRENP: EOICount is not 0 */ if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) && ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) { value |= R_GICH_MISR_LRENP_MASK; } /* NP: no pending interrupts */ if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) { value |= R_GICH_MISR_NP_MASK; } /* VGrp0E: group0 virq signaling enabled */ if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) && (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) { value |= R_GICH_MISR_VGrp0E_MASK; } /* VGrp0D: group0 virq signaling disabled */ if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) && !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) { value |= R_GICH_MISR_VGrp0D_MASK; } /* VGrp1E: group1 virq signaling enabled */ if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) && (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) { value |= R_GICH_MISR_VGrp1E_MASK; } /* VGrp1D: group1 virq signaling disabled */ if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) && !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) { value |= R_GICH_MISR_VGrp1D_MASK; } s->h_misr[cpu] = value; } static void gic_update_maintenance(GICState *s) { int cpu = 0; int maint_level; for (cpu = 0; cpu < s->num_cpu; cpu++) { gic_compute_misr(s, cpu); maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu]; trace_gic_update_maintenance_irq(cpu, maint_level); qemu_set_irq(s->maintenance_irq[cpu], maint_level); } } static void gic_update_virt(GICState *s) { gic_update_internal(s, true); gic_update_maintenance(s); } static void gic_set_irq_11mpcore(GICState *s, int irq, int level, int cm, int target) { if (level) { GIC_DIST_SET_LEVEL(irq, cm); if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) { DPRINTF("Set %d pending mask %x\n", irq, target); GIC_DIST_SET_PENDING(irq, target); } } else { GIC_DIST_CLEAR_LEVEL(irq, cm); } } static void gic_set_irq_generic(GICState *s, int irq, int level, int cm, int target) { if (level) { GIC_DIST_SET_LEVEL(irq, cm); DPRINTF("Set %d pending mask %x\n", irq, target); if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) { GIC_DIST_SET_PENDING(irq, target); } } else { GIC_DIST_CLEAR_LEVEL(irq, cm); } } /* Process a change in an external IRQ input. */ static void gic_set_irq(void *opaque, int irq, int level) { /* Meaning of the 'irq' parameter: * [0..N-1] : external interrupts * [N..N+31] : PPI (internal) interrupts for CPU 0 * [N+32..N+63] : PPI (internal interrupts for CPU 1 * ... */ GICState *s = (GICState *)opaque; int cm, target; if (irq < (s->num_irq - GIC_INTERNAL)) { /* The first external input line is internal interrupt 32. */ cm = ALL_CPU_MASK; irq += GIC_INTERNAL; target = GIC_DIST_TARGET(irq); } else { int cpu; irq -= (s->num_irq - GIC_INTERNAL); cpu = irq / GIC_INTERNAL; irq %= GIC_INTERNAL; cm = 1 << cpu; target = cm; } assert(irq >= GIC_NR_SGIS); if (level == GIC_DIST_TEST_LEVEL(irq, cm)) { return; } if (s->revision == REV_11MPCORE) { gic_set_irq_11mpcore(s, irq, level, cm, target); } else { gic_set_irq_generic(s, irq, level, cm, target); } trace_gic_set_irq(irq, level, cm, target); gic_update(s); } static uint16_t gic_get_current_pending_irq(GICState *s, int cpu, MemTxAttrs attrs) { uint16_t pending_irq = s->current_pending[cpu]; if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) { int group = gic_test_group(s, pending_irq, cpu); /* On a GIC without the security extensions, reading this register * behaves in the same way as a secure access to a GIC with them. */ bool secure = !gic_cpu_ns_access(s, cpu, attrs); if (group == 0 && !secure) { /* Group0 interrupts hidden from Non-secure access */ return 1023; } if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) { /* Group1 interrupts only seen by Secure access if * AckCtl bit set. */ return 1022; } } return pending_irq; } static int gic_get_group_priority(GICState *s, int cpu, int irq) { /* Return the group priority of the specified interrupt * (which is the top bits of its priority, with the number * of bits masked determined by the applicable binary point register). */ int bpr; uint32_t mask; if (gic_has_groups(s) && !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) && gic_test_group(s, irq, cpu)) { bpr = s->abpr[cpu] - 1; assert(bpr >= 0); } else { bpr = s->bpr[cpu]; } /* a BPR of 0 means the group priority bits are [7:1]; * a BPR of 1 means they are [7:2], and so on down to * a BPR of 7 meaning no group priority bits at all. */ mask = ~0U << ((bpr & 7) + 1); return gic_get_priority(s, irq, cpu) & mask; } static void gic_activate_irq(GICState *s, int cpu, int irq) { /* Set the appropriate Active Priority Register bit for this IRQ, * and update the running priority. */ int prio = gic_get_group_priority(s, cpu, irq); int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR; int preemption_level = prio >> (min_bpr + 1); int regno = preemption_level / 32; int bitno = preemption_level % 32; uint32_t *papr = NULL; if (gic_is_vcpu(cpu)) { assert(regno == 0); papr = &s->h_apr[gic_get_vcpu_real_id(cpu)]; } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) { papr = &s->nsapr[regno][cpu]; } else { papr = &s->apr[regno][cpu]; } *papr |= (1 << bitno); s->running_priority[cpu] = prio; gic_set_active(s, irq, cpu); } static int gic_get_prio_from_apr_bits(GICState *s, int cpu) { /* Recalculate the current running priority for this CPU based * on the set bits in the Active Priority Registers. */ int i; if (gic_is_vcpu(cpu)) { uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)]; if (apr) { return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1); } else { return 0x100; } } for (i = 0; i < GIC_NR_APRS; i++) { uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu]; if (!apr) { continue; } return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); } return 0x100; } static void gic_drop_prio(GICState *s, int cpu, int group) { /* Drop the priority of the currently active interrupt in the * specified group. * * Note that we can guarantee (because of the requirement to nest * GICC_IAR reads [which activate an interrupt and raise priority] * with GICC_EOIR writes [which drop the priority for the interrupt]) * that the interrupt we're being called for is the highest priority * active interrupt, meaning that it has the lowest set bit in the * APR registers. * * If the guest does not honour the ordering constraints then the * behaviour of the GIC is UNPREDICTABLE, which for us means that * the values of the APR registers might become incorrect and the * running priority will be wrong, so interrupts that should preempt * might not do so, and interrupts that should not preempt might do so. */ if (gic_is_vcpu(cpu)) { int rcpu = gic_get_vcpu_real_id(cpu); if (s->h_apr[rcpu]) { /* Clear lowest set bit */ s->h_apr[rcpu] &= s->h_apr[rcpu] - 1; } } else { int i; for (i = 0; i < GIC_NR_APRS; i++) { uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu]; if (!*papr) { continue; } /* Clear lowest set bit */ *papr &= *papr - 1; break; } } s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu); } static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu) { int src; uint32_t ret; if (!gic_is_vcpu(cpu)) { /* Lookup the source CPU for the SGI and clear this in the * sgi_pending map. Return the src and clear the overall pending * state on this CPU if the SGI is not pending from any CPUs. */ assert(s->sgi_pending[irq][cpu] != 0); src = ctz32(s->sgi_pending[irq][cpu]); s->sgi_pending[irq][cpu] &= ~(1 << src); if (s->sgi_pending[irq][cpu] == 0) { gic_clear_pending(s, irq, cpu); } ret = irq | ((src & 0x7) << 10); } else { uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu); src = GICH_LR_CPUID(*lr_entry); gic_clear_pending(s, irq, cpu); ret = irq | (src << 10); } return ret; } uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs) { int ret, irq; /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately * for the case where this GIC supports grouping and the pending interrupt * is in the wrong group. */ irq = gic_get_current_pending_irq(s, cpu, attrs); trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu", gic_get_vcpu_real_id(cpu), irq); if (irq >= GIC_MAXIRQ) { DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq); return irq; } if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) { DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq); return 1023; } gic_activate_irq(s, cpu, irq); if (s->revision == REV_11MPCORE) { /* Clear pending flags for both level and edge triggered interrupts. * Level triggered IRQs will be reasserted once they become inactive. */ gic_clear_pending(s, irq, cpu); ret = irq; } else { if (irq < GIC_NR_SGIS) { ret = gic_clear_pending_sgi(s, irq, cpu); } else { gic_clear_pending(s, irq, cpu); ret = irq; } } if (gic_is_vcpu(cpu)) { gic_update_virt(s); } else { gic_update(s); } DPRINTF("ACK %d\n", irq); return ret; } static uint32_t gic_fullprio_mask(GICState *s, int cpu) { /* * Return a mask word which clears the unimplemented priority * bits from a priority value for an interrupt. (Not to be * confused with the group priority, whose mask depends on BPR.) */ int priBits; if (gic_is_vcpu(cpu)) { priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS; } else { priBits = s->n_prio_bits; } return ~0U << (8 - priBits); } void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val, MemTxAttrs attrs) { if (s->security_extn && !attrs.secure) { if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) { return; /* Ignore Non-secure access of Group0 IRQ */ } val = 0x80 | (val >> 1); /* Non-secure view */ } val &= gic_fullprio_mask(s, cpu); if (irq < GIC_INTERNAL) { s->priority1[irq][cpu] = val; } else { s->priority2[(irq) - GIC_INTERNAL] = val; } } static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq, MemTxAttrs attrs) { uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu); if (s->security_extn && !attrs.secure) { if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) { return 0; /* Non-secure access cannot read priority of Group0 IRQ */ } prio = (prio << 1) & 0xff; /* Non-secure view */ } return prio & gic_fullprio_mask(s, cpu); } static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask, MemTxAttrs attrs) { if (gic_cpu_ns_access(s, cpu, attrs)) { if (s->priority_mask[cpu] & 0x80) { /* Priority Mask in upper half */ pmask = 0x80 | (pmask >> 1); } else { /* Non-secure write ignored if priority mask is in lower half */ return; } } s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu); } static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs) { uint32_t pmask = s->priority_mask[cpu]; if (gic_cpu_ns_access(s, cpu, attrs)) { if (pmask & 0x80) { /* Priority Mask in upper half, return Non-secure view */ pmask = (pmask << 1) & 0xff; } else { /* Priority Mask in lower half, RAZ */ pmask = 0; } } return pmask; } static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs) { uint32_t ret = s->cpu_ctlr[cpu]; if (gic_cpu_ns_access(s, cpu, attrs)) { /* Construct the NS banked view of GICC_CTLR from the correct * bits of the S banked view. We don't need to move the bypass * control bits because we don't implement that (IMPDEF) part * of the GIC architecture. */ ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1; } return ret; } static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value, MemTxAttrs attrs) { uint32_t mask; if (gic_cpu_ns_access(s, cpu, attrs)) { /* The NS view can only write certain bits in the register; * the rest are unchanged */ mask = GICC_CTLR_EN_GRP1; if (s->revision == 2) { mask |= GICC_CTLR_EOIMODE_NS; } s->cpu_ctlr[cpu] &= ~mask; s->cpu_ctlr[cpu] |= (value << 1) & mask; } else { if (s->revision == 2) { mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK; } else { mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK; } s->cpu_ctlr[cpu] = value & mask; } DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, " "Group1 Interrupts %sabled\n", cpu, (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis", (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis"); } static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs) { if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) { /* Idle priority */ return 0xff; } if (gic_cpu_ns_access(s, cpu, attrs)) { if (s->running_priority[cpu] & 0x80) { /* Running priority in upper half of range: return the Non-secure * view of the priority. */ return s->running_priority[cpu] << 1; } else { /* Running priority in lower half of range: RAZ */ return 0; } } else { return s->running_priority[cpu]; } } /* Return true if we should split priority drop and interrupt deactivation, * ie whether the relevant EOIMode bit is set. */ static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs) { if (s->revision != 2) { /* Before GICv2 prio-drop and deactivate are not separable */ return false; } if (gic_cpu_ns_access(s, cpu, attrs)) { return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS; } return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE; } static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs) { int group; if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) { /* * This handles two cases: * 1. If software writes the ID of a spurious interrupt [ie 1023] * to the GICC_DIR, the GIC ignores that write. * 2. If software writes the number of a non-existent interrupt * this must be a subcase of "value written is not an active interrupt" * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs, * all IRQs potentially exist, so this limit does not apply. */ return; } if (!gic_eoi_split(s, cpu, attrs)) { /* This is UNPREDICTABLE; we choose to ignore it */ qemu_log_mask(LOG_GUEST_ERROR, "gic_deactivate_irq: GICC_DIR write when EOIMode clear"); return; } if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) { /* This vIRQ does not have an LR entry which is either active or * pending and active. Increment EOICount and ignore the write. */ int rcpu = gic_get_vcpu_real_id(cpu); s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT; /* Update the virtual interface in case a maintenance interrupt should * be raised. */ gic_update_virt(s); return; } group = gic_has_groups(s) && gic_test_group(s, irq, cpu); if (gic_cpu_ns_access(s, cpu, attrs) && !group) { DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq); return; } gic_clear_active(s, irq, cpu); } static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs) { int cm = 1 << cpu; int group; DPRINTF("EOI %d\n", irq); if (gic_is_vcpu(cpu)) { /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the * running prio is < 0x100. */ bool prio_drop = s->running_priority[cpu] < 0x100; if (irq >= GIC_MAXIRQ) { /* Ignore spurious interrupt */ return; } gic_drop_prio(s, cpu, 0); if (!gic_eoi_split(s, cpu, attrs)) { bool valid = gic_virq_is_valid(s, irq, cpu); if (prio_drop && !valid) { /* We are in a situation where: * - V_CTRL.EOIMode is false (no EOI split), * - The call to gic_drop_prio() cleared a bit in GICH_APR, * - This vIRQ does not have an LR entry which is either * active or pending and active. * In that case, we must increment EOICount. */ int rcpu = gic_get_vcpu_real_id(cpu); s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT; } else if (valid) { gic_clear_active(s, irq, cpu); } } gic_update_virt(s); return; } if (irq >= s->num_irq) { /* This handles two cases: * 1. If software writes the ID of a spurious interrupt [ie 1023] * to the GICC_EOIR, the GIC ignores that write. * 2. If software writes the number of a non-existent interrupt * this must be a subcase of "value written does not match the last * valid interrupt value read from the Interrupt Acknowledge * register" and so this is UNPREDICTABLE. We choose to ignore it. */ return; } if (s->running_priority[cpu] == 0x100) { return; /* No active IRQ. */ } if (s->revision == REV_11MPCORE) { /* Mark level triggered interrupts as pending if they are still raised. */ if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm) && GIC_DIST_TEST_LEVEL(irq, cm) && (GIC_DIST_TARGET(irq) & cm) != 0) { DPRINTF("Set %d pending mask %x\n", irq, cm); GIC_DIST_SET_PENDING(irq, cm); } } group = gic_has_groups(s) && gic_test_group(s, irq, cpu); if (gic_cpu_ns_access(s, cpu, attrs) && !group) { DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq); return; } /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1, * i.e. go ahead and complete the irq anyway. */ gic_drop_prio(s, cpu, group); /* In GICv2 the guest can choose to split priority-drop and deactivate */ if (!gic_eoi_split(s, cpu, attrs)) { gic_clear_active(s, irq, cpu); } gic_update(s); } static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; uint32_t res; int irq; int i; int cpu; int cm; int mask; cpu = gic_get_current_cpu(s); cm = 1 << cpu; if (offset < 0x100) { if (offset == 0) { /* GICD_CTLR */ if (s->security_extn && !attrs.secure) { /* The NS bank of this register is just an alias of the * EnableGrp1 bit in the S bank version. */ return extract32(s->ctlr, 1, 1); } else { return s->ctlr; } } if (offset == 4) /* Interrupt Controller Type Register */ return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5) | (s->security_extn << 10); if (offset < 0x08) return 0; if (offset >= 0x80) { /* Interrupt Group Registers: these RAZ/WI if this is an NS * access to a GIC with the security extensions, or if the GIC * doesn't have groups at all. */ res = 0; if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) { /* Every byte offset holds 8 group status bits */ irq = (offset - 0x080) * 8; if (irq >= s->num_irq) { goto bad_reg; } for (i = 0; i < 8; i++) { if (GIC_DIST_TEST_GROUP(irq + i, cm)) { res |= (1 << i); } } } return res; } goto bad_reg; } else if (offset < 0x200) { /* Interrupt Set/Clear Enable. */ if (offset < 0x180) irq = (offset - 0x100) * 8; else irq = (offset - 0x180) * 8; if (irq >= s->num_irq) goto bad_reg; res = 0; for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (GIC_DIST_TEST_ENABLED(irq + i, cm)) { res |= (1 << i); } } } else if (offset < 0x300) { /* Interrupt Set/Clear Pending. */ if (offset < 0x280) irq = (offset - 0x200) * 8; else irq = (offset - 0x280) * 8; if (irq >= s->num_irq) goto bad_reg; res = 0; mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK; for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (gic_test_pending(s, irq + i, mask)) { res |= (1 << i); } } } else if (offset < 0x400) { /* Interrupt Set/Clear Active. */ if (offset < 0x380) { irq = (offset - 0x300) * 8; } else if (s->revision == 2) { irq = (offset - 0x380) * 8; } else { goto bad_reg; } if (irq >= s->num_irq) goto bad_reg; res = 0; mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK; for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) { res |= (1 << i); } } } else if (offset < 0x800) { /* Interrupt Priority. */ irq = (offset - 0x400); if (irq >= s->num_irq) goto bad_reg; res = gic_dist_get_priority(s, cpu, irq, attrs); } else if (offset < 0xc00) { /* Interrupt CPU Target. */ if (s->num_cpu == 1 && s->revision != REV_11MPCORE) { /* For uniprocessor GICs these RAZ/WI */ res = 0; } else { irq = (offset - 0x800); if (irq >= s->num_irq) { goto bad_reg; } if (irq < 29 && s->revision == REV_11MPCORE) { res = 0; } else if (irq < GIC_INTERNAL) { res = cm; } else { res = GIC_DIST_TARGET(irq); } } } else if (offset < 0xf00) { /* Interrupt Configuration. */ irq = (offset - 0xc00) * 4; if (irq >= s->num_irq) goto bad_reg; res = 0; for (i = 0; i < 4; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (GIC_DIST_TEST_MODEL(irq + i)) { res |= (1 << (i * 2)); } if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) { res |= (2 << (i * 2)); } } } else if (offset < 0xf10) { goto bad_reg; } else if (offset < 0xf30) { if (s->revision == REV_11MPCORE) { goto bad_reg; } if (offset < 0xf20) { /* GICD_CPENDSGIRn */ irq = (offset - 0xf10); } else { irq = (offset - 0xf20); /* GICD_SPENDSGIRn */ } if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { res = 0; /* Ignore Non-secure access of Group0 IRQ */ } else { res = s->sgi_pending[irq][cpu]; } } else if (offset < 0xfd0) { goto bad_reg; } else if (offset < 0x1000) { if (offset & 3) { res = 0; } else { switch (s->revision) { case REV_11MPCORE: res = gic_id_11mpcore[(offset - 0xfd0) >> 2]; break; case 1: res = gic_id_gicv1[(offset - 0xfd0) >> 2]; break; case 2: res = gic_id_gicv2[(offset - 0xfd0) >> 2]; break; default: res = 0; } } } else { g_assert_not_reached(); } return res; bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "gic_dist_readb: Bad offset %x\n", (int)offset); return 0; } static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data, unsigned size, MemTxAttrs attrs) { switch (size) { case 1: *data = gic_dist_readb(opaque, offset, attrs); break; case 2: *data = gic_dist_readb(opaque, offset, attrs); *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8; break; case 4: *data = gic_dist_readb(opaque, offset, attrs); *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8; *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16; *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24; break; default: return MEMTX_ERROR; } trace_gic_dist_read(offset, size, *data); return MEMTX_OK; } static void gic_dist_writeb(void *opaque, hwaddr offset, uint32_t value, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; int irq; int i; int cpu; cpu = gic_get_current_cpu(s); if (offset < 0x100) { if (offset == 0) { if (s->security_extn && !attrs.secure) { /* NS version is just an alias of the S version's bit 1 */ s->ctlr = deposit32(s->ctlr, 1, 1, value); } else if (gic_has_groups(s)) { s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1); } else { s->ctlr = value & GICD_CTLR_EN_GRP0; } DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n", s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis", s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis"); } else if (offset < 4) { /* ignored. */ } else if (offset >= 0x80) { /* Interrupt Group Registers: RAZ/WI for NS access to secure * GIC, or for GICs without groups. */ if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) { /* Every byte offset holds 8 group status bits */ irq = (offset - 0x80) * 8; if (irq >= s->num_irq) { goto bad_reg; } for (i = 0; i < 8; i++) { /* Group bits are banked for private interrupts */ int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (value & (1 << i)) { /* Group1 (Non-secure) */ GIC_DIST_SET_GROUP(irq + i, cm); } else { /* Group0 (Secure) */ GIC_DIST_CLEAR_GROUP(irq + i, cm); } } } } else { goto bad_reg; } } else if (offset < 0x180) { /* Interrupt Set Enable. */ irq = (offset - 0x100) * 8; if (irq >= s->num_irq) goto bad_reg; if (irq < GIC_NR_SGIS) { value = 0xff; } for (i = 0; i < 8; i++) { if (value & (1 << i)) { int mask = (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_DIST_TARGET(irq + i); int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) { DPRINTF("Enabled IRQ %d\n", irq + i); trace_gic_enable_irq(irq + i); } GIC_DIST_SET_ENABLED(irq + i, cm); /* If a raised level triggered IRQ enabled then mark is as pending. */ if (GIC_DIST_TEST_LEVEL(irq + i, mask) && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) { DPRINTF("Set %d pending mask %x\n", irq + i, mask); GIC_DIST_SET_PENDING(irq + i, mask); } } } } else if (offset < 0x200) { /* Interrupt Clear Enable. */ irq = (offset - 0x180) * 8; if (irq >= s->num_irq) goto bad_reg; if (irq < GIC_NR_SGIS) { value = 0; } for (i = 0; i < 8; i++) { if (value & (1 << i)) { int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (GIC_DIST_TEST_ENABLED(irq + i, cm)) { DPRINTF("Disabled IRQ %d\n", irq + i); trace_gic_disable_irq(irq + i); } GIC_DIST_CLEAR_ENABLED(irq + i, cm); } } } else if (offset < 0x280) { /* Interrupt Set Pending. */ irq = (offset - 0x200) * 8; if (irq >= s->num_irq) goto bad_reg; if (irq < GIC_NR_SGIS) { value = 0; } for (i = 0; i < 8; i++) { if (value & (1 << i)) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i)); } } } else if (offset < 0x300) { /* Interrupt Clear Pending. */ irq = (offset - 0x280) * 8; if (irq >= s->num_irq) goto bad_reg; if (irq < GIC_NR_SGIS) { value = 0; } for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } /* ??? This currently clears the pending bit for all CPUs, even for per-CPU interrupts. It's unclear whether this is the corect behavior. */ if (value & (1 << i)) { GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK); } } } else if (offset < 0x380) { /* Interrupt Set Active. */ if (s->revision != 2) { goto bad_reg; } irq = (offset - 0x300) * 8; if (irq >= s->num_irq) { goto bad_reg; } /* This register is banked per-cpu for PPIs */ int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK; for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (value & (1 << i)) { GIC_DIST_SET_ACTIVE(irq + i, cm); } } } else if (offset < 0x400) { /* Interrupt Clear Active. */ if (s->revision != 2) { goto bad_reg; } irq = (offset - 0x380) * 8; if (irq >= s->num_irq) { goto bad_reg; } /* This register is banked per-cpu for PPIs */ int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK; for (i = 0; i < 8; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (value & (1 << i)) { GIC_DIST_CLEAR_ACTIVE(irq + i, cm); } } } else if (offset < 0x800) { /* Interrupt Priority. */ irq = (offset - 0x400); if (irq >= s->num_irq) goto bad_reg; gic_dist_set_priority(s, cpu, irq, value, attrs); } else if (offset < 0xc00) { /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the * annoying exception of the 11MPCore's GIC. */ if (s->num_cpu != 1 || s->revision == REV_11MPCORE) { irq = (offset - 0x800); if (irq >= s->num_irq) { goto bad_reg; } if (irq < 29 && s->revision == REV_11MPCORE) { value = 0; } else if (irq < GIC_INTERNAL) { value = ALL_CPU_MASK; } s->irq_target[irq] = value & ALL_CPU_MASK; } } else if (offset < 0xf00) { /* Interrupt Configuration. */ irq = (offset - 0xc00) * 4; if (irq >= s->num_irq) goto bad_reg; if (irq < GIC_NR_SGIS) value |= 0xaa; for (i = 0; i < 4; i++) { if (s->security_extn && !attrs.secure && !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { continue; /* Ignore Non-secure access of Group0 IRQ */ } if (s->revision == REV_11MPCORE) { if (value & (1 << (i * 2))) { GIC_DIST_SET_MODEL(irq + i); } else { GIC_DIST_CLEAR_MODEL(irq + i); } } if (value & (2 << (i * 2))) { GIC_DIST_SET_EDGE_TRIGGER(irq + i); } else { GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i); } } } else if (offset < 0xf10) { /* 0xf00 is only handled for 32-bit writes. */ goto bad_reg; } else if (offset < 0xf20) { /* GICD_CPENDSGIRn */ if (s->revision == REV_11MPCORE) { goto bad_reg; } irq = (offset - 0xf10); if (!s->security_extn || attrs.secure || GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { s->sgi_pending[irq][cpu] &= ~value; if (s->sgi_pending[irq][cpu] == 0) { GIC_DIST_CLEAR_PENDING(irq, 1 << cpu); } } } else if (offset < 0xf30) { /* GICD_SPENDSGIRn */ if (s->revision == REV_11MPCORE) { goto bad_reg; } irq = (offset - 0xf20); if (!s->security_extn || attrs.secure || GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { GIC_DIST_SET_PENDING(irq, 1 << cpu); s->sgi_pending[irq][cpu] |= value; } } else { goto bad_reg; } gic_update(s); return; bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "gic_dist_writeb: Bad offset %x\n", (int)offset); } static void gic_dist_writew(void *opaque, hwaddr offset, uint32_t value, MemTxAttrs attrs) { gic_dist_writeb(opaque, offset, value & 0xff, attrs); gic_dist_writeb(opaque, offset + 1, value >> 8, attrs); } static void gic_dist_writel(void *opaque, hwaddr offset, uint32_t value, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; if (offset == 0xf00) { int cpu; int irq; int mask; int target_cpu; cpu = gic_get_current_cpu(s); irq = value & 0x3ff; switch ((value >> 24) & 3) { case 0: mask = (value >> 16) & ALL_CPU_MASK; break; case 1: mask = ALL_CPU_MASK ^ (1 << cpu); break; case 2: mask = 1 << cpu; break; default: DPRINTF("Bad Soft Int target filter\n"); mask = ALL_CPU_MASK; break; } GIC_DIST_SET_PENDING(irq, mask); target_cpu = ctz32(mask); while (target_cpu < GIC_NCPU) { s->sgi_pending[irq][target_cpu] |= (1 << cpu); mask &= ~(1 << target_cpu); target_cpu = ctz32(mask); } gic_update(s); return; } gic_dist_writew(opaque, offset, value & 0xffff, attrs); gic_dist_writew(opaque, offset + 2, value >> 16, attrs); } static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data, unsigned size, MemTxAttrs attrs) { trace_gic_dist_write(offset, size, data); switch (size) { case 1: gic_dist_writeb(opaque, offset, data, attrs); return MEMTX_OK; case 2: gic_dist_writew(opaque, offset, data, attrs); return MEMTX_OK; case 4: gic_dist_writel(opaque, offset, data, attrs); return MEMTX_OK; default: return MEMTX_ERROR; } } static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno) { /* Return the Nonsecure view of GICC_APR. This is the * second half of GICC_NSAPR. */ switch (GIC_MIN_BPR) { case 0: if (regno < 2) { return s->nsapr[regno + 2][cpu]; } break; case 1: if (regno == 0) { return s->nsapr[regno + 1][cpu]; } break; case 2: if (regno == 0) { return extract32(s->nsapr[0][cpu], 16, 16); } break; case 3: if (regno == 0) { return extract32(s->nsapr[0][cpu], 8, 8); } break; default: g_assert_not_reached(); } return 0; } static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno, uint32_t value) { /* Write the Nonsecure view of GICC_APR. */ switch (GIC_MIN_BPR) { case 0: if (regno < 2) { s->nsapr[regno + 2][cpu] = value; } break; case 1: if (regno == 0) { s->nsapr[regno + 1][cpu] = value; } break; case 2: if (regno == 0) { s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value); } break; case 3: if (regno == 0) { s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value); } break; default: g_assert_not_reached(); } } static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset, uint64_t *data, MemTxAttrs attrs) { switch (offset) { case 0x00: /* Control */ *data = gic_get_cpu_control(s, cpu, attrs); break; case 0x04: /* Priority mask */ *data = gic_get_priority_mask(s, cpu, attrs); break; case 0x08: /* Binary Point */ if (gic_cpu_ns_access(s, cpu, attrs)) { if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) { /* NS view of BPR when CBPR is 1 */ *data = MIN(s->bpr[cpu] + 1, 7); } else { /* BPR is banked. Non-secure copy stored in ABPR. */ *data = s->abpr[cpu]; } } else { *data = s->bpr[cpu]; } break; case 0x0c: /* Acknowledge */ *data = gic_acknowledge_irq(s, cpu, attrs); break; case 0x14: /* Running Priority */ *data = gic_get_running_priority(s, cpu, attrs); break; case 0x18: /* Highest Pending Interrupt */ *data = gic_get_current_pending_irq(s, cpu, attrs); break; case 0x1c: /* Aliased Binary Point */ /* GIC v2, no security: ABPR * GIC v1, no security: not implemented (RAZ/WI) * With security extensions, secure access: ABPR (alias of NS BPR) * With security extensions, nonsecure access: RAZ/WI */ if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { *data = 0; } else { *data = s->abpr[cpu]; } break; case 0xd0: case 0xd4: case 0xd8: case 0xdc: { int regno = (offset - 0xd0) / 4; int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS; if (regno >= nr_aprs || s->revision != 2) { *data = 0; } else if (gic_is_vcpu(cpu)) { *data = s->h_apr[gic_get_vcpu_real_id(cpu)]; } else if (gic_cpu_ns_access(s, cpu, attrs)) { /* NS view of GICC_APR is the top half of GIC_NSAPR */ *data = gic_apr_ns_view(s, regno, cpu); } else { *data = s->apr[regno][cpu]; } break; } case 0xe0: case 0xe4: case 0xe8: case 0xec: { int regno = (offset - 0xe0) / 4; if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) || gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) { *data = 0; } else { *data = s->nsapr[regno][cpu]; } break; } default: qemu_log_mask(LOG_GUEST_ERROR, "gic_cpu_read: Bad offset %x\n", (int)offset); *data = 0; break; } trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu", gic_get_vcpu_real_id(cpu), offset, *data); return MEMTX_OK; } static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset, uint32_t value, MemTxAttrs attrs) { trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu", gic_get_vcpu_real_id(cpu), offset, value); switch (offset) { case 0x00: /* Control */ gic_set_cpu_control(s, cpu, value, attrs); break; case 0x04: /* Priority mask */ gic_set_priority_mask(s, cpu, value, attrs); break; case 0x08: /* Binary Point */ if (gic_cpu_ns_access(s, cpu, attrs)) { if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) { /* WI when CBPR is 1 */ return MEMTX_OK; } else { s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR); } } else { int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR; s->bpr[cpu] = MAX(value & 0x7, min_bpr); } break; case 0x10: /* End Of Interrupt */ gic_complete_irq(s, cpu, value & 0x3ff, attrs); return MEMTX_OK; case 0x1c: /* Aliased Binary Point */ if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { /* unimplemented, or NS access: RAZ/WI */ return MEMTX_OK; } else { s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR); } break; case 0xd0: case 0xd4: case 0xd8: case 0xdc: { int regno = (offset - 0xd0) / 4; int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS; if (regno >= nr_aprs || s->revision != 2) { return MEMTX_OK; } if (gic_is_vcpu(cpu)) { s->h_apr[gic_get_vcpu_real_id(cpu)] = value; } else if (gic_cpu_ns_access(s, cpu, attrs)) { /* NS view of GICC_APR is the top half of GIC_NSAPR */ gic_apr_write_ns_view(s, regno, cpu, value); } else { s->apr[regno][cpu] = value; } break; } case 0xe0: case 0xe4: case 0xe8: case 0xec: { int regno = (offset - 0xe0) / 4; if (regno >= GIC_NR_APRS || s->revision != 2) { return MEMTX_OK; } if (gic_is_vcpu(cpu)) { return MEMTX_OK; } if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { return MEMTX_OK; } s->nsapr[regno][cpu] = value; break; } case 0x1000: /* GICC_DIR */ gic_deactivate_irq(s, cpu, value & 0x3ff, attrs); break; default: qemu_log_mask(LOG_GUEST_ERROR, "gic_cpu_write: Bad offset %x\n", (int)offset); return MEMTX_OK; } if (gic_is_vcpu(cpu)) { gic_update_virt(s); } else { gic_update(s); } return MEMTX_OK; } /* Wrappers to read/write the GIC CPU interface for the current CPU */ static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs); } static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs); } /* Wrappers to read/write the GIC CPU interface for a specific CPU. * These just decode the opaque pointer into GICState* + cpu id. */ static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICState **backref = (GICState **)opaque; GICState *s = *backref; int id = (backref - s->backref); return gic_cpu_read(s, id, addr, data, attrs); } static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { GICState **backref = (GICState **)opaque; GICState *s = *backref; int id = (backref - s->backref); return gic_cpu_write(s, id, addr, value, attrs); } static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs); } static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs); } static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start) { int lr_idx; uint32_t ret = 0; for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) { uint32_t *entry = &s->h_lr[lr_idx][cpu]; ret = deposit32(ret, lr_idx - lr_start, 1, gic_lr_entry_is_eoi(*entry)); } return ret; } static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start) { int lr_idx; uint32_t ret = 0; for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) { uint32_t *entry = &s->h_lr[lr_idx][cpu]; ret = deposit32(ret, lr_idx - lr_start, 1, gic_lr_entry_is_free(*entry)); } return ret; } static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs) { int vcpu = gic_get_current_vcpu(s); uint32_t ctlr; uint32_t abpr; uint32_t bpr; uint32_t prio_mask; ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr); abpr = FIELD_EX32(value, GICH_VMCR, VMABP); bpr = FIELD_EX32(value, GICH_VMCR, VMBP); prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3; gic_set_cpu_control(s, vcpu, ctlr, attrs); s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR); s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR); gic_set_priority_mask(s, vcpu, prio_mask, attrs); } static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr, uint64_t *data, MemTxAttrs attrs) { GICState *s = ARM_GIC(opaque); int vcpu = cpu + GIC_NCPU; switch (addr) { case A_GICH_HCR: /* Hypervisor Control */ *data = s->h_hcr[cpu]; break; case A_GICH_VTR: /* VGIC Type */ *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1); *data = FIELD_DP32(*data, GICH_VTR, PREbits, GIC_VIRT_MAX_GROUP_PRIO_BITS - 1); *data = FIELD_DP32(*data, GICH_VTR, PRIbits, (7 - GIC_VIRT_MIN_BPR) - 1); break; case A_GICH_VMCR: /* Virtual Machine Control */ *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr, extract32(s->cpu_ctlr[vcpu], 0, 10)); *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]); *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]); *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask, extract32(s->priority_mask[vcpu], 3, 5)); break; case A_GICH_MISR: /* Maintenance Interrupt Status */ *data = s->h_misr[cpu]; break; case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */ case A_GICH_EISR1: *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8); break; case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */ case A_GICH_ELRSR1: *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8); break; case A_GICH_APR: /* Active Priorities */ *data = s->h_apr[cpu]; break; case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */ { int lr_idx = (addr - A_GICH_LR0) / 4; if (lr_idx > s->num_lrs) { *data = 0; } else { *data = s->h_lr[lr_idx][cpu]; } break; } default: qemu_log_mask(LOG_GUEST_ERROR, "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr); return MEMTX_OK; } trace_gic_hyp_read(addr, *data); return MEMTX_OK; } static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr, uint64_t value, MemTxAttrs attrs) { GICState *s = ARM_GIC(opaque); int vcpu = cpu + GIC_NCPU; trace_gic_hyp_write(addr, value); switch (addr) { case A_GICH_HCR: /* Hypervisor Control */ s->h_hcr[cpu] = value & GICH_HCR_MASK; break; case A_GICH_VMCR: /* Virtual Machine Control */ gic_vmcr_write(s, value, attrs); break; case A_GICH_APR: /* Active Priorities */ s->h_apr[cpu] = value; s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu); break; case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */ { int lr_idx = (addr - A_GICH_LR0) / 4; if (lr_idx > s->num_lrs) { return MEMTX_OK; } s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK; trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]); break; } default: qemu_log_mask(LOG_GUEST_ERROR, "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr); return MEMTX_OK; } gic_update_virt(s); return MEMTX_OK; } static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs); } static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { GICState *s = (GICState *)opaque; return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs); } static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICState **backref = (GICState **)opaque; GICState *s = *backref; int id = (backref - s->backref); return gic_hyp_read(s, id, addr, data, attrs); } static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { GICState **backref = (GICState **)opaque; GICState *s = *backref; int id = (backref - s->backref); return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs); } static const MemoryRegionOps gic_ops[2] = { { .read_with_attrs = gic_dist_read, .write_with_attrs = gic_dist_write, .endianness = DEVICE_NATIVE_ENDIAN, }, { .read_with_attrs = gic_thiscpu_read, .write_with_attrs = gic_thiscpu_write, .endianness = DEVICE_NATIVE_ENDIAN, } }; static const MemoryRegionOps gic_cpu_ops = { .read_with_attrs = gic_do_cpu_read, .write_with_attrs = gic_do_cpu_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps gic_virt_ops[2] = { { .read_with_attrs = gic_thiscpu_hyp_read, .write_with_attrs = gic_thiscpu_hyp_write, .endianness = DEVICE_NATIVE_ENDIAN, }, { .read_with_attrs = gic_thisvcpu_read, .write_with_attrs = gic_thisvcpu_write, .endianness = DEVICE_NATIVE_ENDIAN, } }; static const MemoryRegionOps gic_viface_ops = { .read_with_attrs = gic_do_hyp_read, .write_with_attrs = gic_do_hyp_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void arm_gic_realize(DeviceState *dev, Error **errp) { /* Device instance realize function for the GIC sysbus device */ int i; GICState *s = ARM_GIC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); ARMGICClass *agc = ARM_GIC_GET_CLASS(s); Error *local_err = NULL; agc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (kvm_enabled() && !kvm_arm_supports_user_irq()) { error_setg(errp, "KVM with user space irqchip only works when the " "host kernel supports KVM_CAP_ARM_USER_IRQ"); return; } if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS || (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS : s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) { error_setg(errp, "num-priority-bits cannot be greater than %d" " or less than %d", GIC_MAX_PRIORITY_BITS, s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS : GIC_MIN_PRIORITY_BITS); return; } /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if * enabled, virtualization extensions related interfaces (main virtual * interface (s->vifaceiomem[0]) and virtual CPU interface). */ gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops); /* Extra core-specific regions for the CPU interfaces. This is * necessary for "franken-GIC" implementations, for example on * Exynos 4. * NB that the memory region size of 0x100 applies for the 11MPCore * and also cores following the GIC v1 spec (ie A9). * GIC v2 defines a larger memory region (0x1000) so this will need * to be extended when we implement A15. */ for (i = 0; i < s->num_cpu; i++) { s->backref[i] = s; memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops, &s->backref[i], "gic_cpu", 0x100); sysbus_init_mmio(sbd, &s->cpuiomem[i+1]); } /* Extra core-specific regions for virtual interfaces. This is required by * the GICv2 specification. */ if (s->virt_extn) { for (i = 0; i < s->num_cpu; i++) { memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s), &gic_viface_ops, &s->backref[i], "gic_viface", 0x200); sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]); } } } static void arm_gic_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ARMGICClass *agc = ARM_GIC_CLASS(klass); device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); } static const TypeInfo arm_gic_info = { .name = TYPE_ARM_GIC, .parent = TYPE_ARM_GIC_COMMON, .instance_size = sizeof(GICState), .class_init = arm_gic_class_init, .class_size = sizeof(ARMGICClass), }; static void arm_gic_register_types(void) { type_register_static(&arm_gic_info); } type_init(arm_gic_register_types)