/* * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2019 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qemu/option.h" #include "qemu/cutils.h" #include "qemu/units.h" #include "qemu-common.h" #include "qapi/error.h" #include "qapi/qmp/qerror.h" #include "qapi/qapi-visit-common.h" #include "qapi/visitor.h" #include "sysemu/qtest.h" #include "sysemu/numa.h" #include "sysemu/replay.h" #include "sysemu/sysemu.h" #include "trace.h" #include "hw/i386/x86.h" #include "target/i386/cpu.h" #include "hw/i386/topology.h" #include "hw/i386/fw_cfg.h" #include "hw/intc/i8259.h" #include "hw/acpi/cpu_hotplug.h" #include "hw/irq.h" #include "hw/nmi.h" #include "hw/loader.h" #include "multiboot.h" #include "elf.h" #include "standard-headers/asm-x86/bootparam.h" #include "config-devices.h" #include "kvm_i386.h" #define BIOS_FILENAME "bios.bin" /* Physical Address of PVH entry point read from kernel ELF NOTE */ static size_t pvh_start_addr; inline void init_topo_info(X86CPUTopoInfo *topo_info, const X86MachineState *x86ms) { MachineState *ms = MACHINE(x86ms); topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets; topo_info->dies_per_pkg = x86ms->smp_dies; topo_info->cores_per_die = ms->smp.cores; topo_info->threads_per_core = ms->smp.threads; } /* * Set up with the new EPYC topology handlers * * AMD uses different apic id encoding for EPYC based cpus. Override * the default topo handlers with EPYC encoding handlers. */ static void x86_set_epyc_topo_handlers(MachineState *machine) { X86MachineState *x86ms = X86_MACHINE(machine); x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc; x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc; x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc; x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc; } /* * Calculates initial APIC ID for a specific CPU index * * Currently we need to be able to calculate the APIC ID from the CPU index * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of * all CPUs up to max_cpus. */ uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, unsigned int cpu_index) { X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); X86CPUTopoInfo topo_info; uint32_t correct_id; static bool warned; init_topo_info(&topo_info, x86ms); correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index); if (x86mc->compat_apic_id_mode) { if (cpu_index != correct_id && !warned && !qtest_enabled()) { error_report("APIC IDs set in compatibility mode, " "CPU topology won't match the configuration"); warned = true; } return cpu_index; } else { return correct_id; } } void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) { Object *cpu = NULL; Error *local_err = NULL; cpu = object_new(MACHINE(x86ms)->cpu_type); object_property_set_uint(cpu, apic_id, "apic-id", &local_err); object_property_set_bool(cpu, true, "realized", &local_err); object_unref(cpu); error_propagate(errp, local_err); } void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) { int i; const CPUArchIdList *possible_cpus; MachineState *ms = MACHINE(x86ms); MachineClass *mc = MACHINE_GET_CLASS(x86ms); /* Check for apicid encoding */ if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) { x86_set_epyc_topo_handlers(ms); } x86_cpu_set_default_version(default_cpu_version); /* * Calculates the limit to CPU APIC ID values * * Limit for the APIC ID value, so that all * CPU APIC IDs are < x86ms->apic_id_limit. * * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). */ x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, ms->smp.max_cpus - 1) + 1; possible_cpus = mc->possible_cpu_arch_ids(ms); for (i = 0; i < ms->possible_cpus->len; i++) { ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(x86ms, i); } for (i = 0; i < ms->smp.cpus; i++) { x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); } } CpuInstanceProperties x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) { X86CPUTopoIDs topo_ids; X86MachineState *x86ms = X86_MACHINE(ms); X86CPUTopoInfo topo_info; init_topo_info(&topo_info, x86ms); assert(idx < ms->possible_cpus->len); x86_topo_ids_from_idx(&topo_info, idx, &topo_ids); return topo_ids.pkg_id % ms->numa_state->num_nodes; } const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) { X86MachineState *x86ms = X86_MACHINE(ms); unsigned int max_cpus = ms->smp.max_cpus; X86CPUTopoInfo topo_info; int i; if (ms->possible_cpus) { /* * make sure that max_cpus hasn't changed since the first use, i.e. * -smp hasn't been parsed after it */ assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; init_topo_info(&topo_info, x86ms); for (i = 0; i < ms->possible_cpus->len; i++) { X86CPUTopoIDs topo_ids; ms->possible_cpus->cpus[i].type = ms->cpu_type; ms->possible_cpus->cpus[i].vcpus_count = 1; x86_topo_ids_from_idx(&topo_info, i, &topo_ids); ms->possible_cpus->cpus[i].props.has_socket_id = true; ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; if (x86ms->smp_dies > 1) { ms->possible_cpus->cpus[i].props.has_die_id = true; ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; } ms->possible_cpus->cpus[i].props.has_core_id = true; ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; ms->possible_cpus->cpus[i].props.has_thread_id = true; ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; } return ms->possible_cpus; } static void x86_nmi(NMIState *n, int cpu_index, Error **errp) { /* cpu index isn't used */ CPUState *cs; CPU_FOREACH(cs) { X86CPU *cpu = X86_CPU(cs); if (!cpu->apic_state) { cpu_interrupt(cs, CPU_INTERRUPT_NMI); } else { apic_deliver_nmi(cpu->apic_state); } } } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_ticks(); } /* IRQ handling */ static void pic_irq_request(void *opaque, int irq, int level) { CPUState *cs = first_cpu; X86CPU *cpu = X86_CPU(cs); trace_x86_pic_interrupt(irq, level); if (cpu->apic_state && !kvm_irqchip_in_kernel()) { CPU_FOREACH(cs) { cpu = X86_CPU(cs); if (apic_accept_pic_intr(cpu->apic_state)) { apic_deliver_pic_intr(cpu->apic_state, level); } } } else { if (level) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } } qemu_irq x86_allocate_cpu_irq(void) { return qemu_allocate_irq(pic_irq_request, NULL, 0); } int cpu_get_pic_interrupt(CPUX86State *env) { X86CPU *cpu = env_archcpu(env); int intno; if (!kvm_irqchip_in_kernel()) { intno = apic_get_interrupt(cpu->apic_state); if (intno >= 0) { return intno; } /* read the irq from the PIC */ if (!apic_accept_pic_intr(cpu->apic_state)) { return -1; } } intno = pic_read_irq(isa_pic); return intno; } DeviceState *cpu_get_current_apic(void) { if (current_cpu) { X86CPU *cpu = X86_CPU(current_cpu); return cpu->apic_state; } else { return NULL; } } void gsi_handler(void *opaque, int n, int level) { GSIState *s = opaque; trace_x86_gsi_interrupt(n, level); if (n < ISA_NUM_IRQS) { /* Under KVM, Kernel will forward to both PIC and IOAPIC */ qemu_set_irq(s->i8259_irq[n], level); } qemu_set_irq(s->ioapic_irq[n], level); } void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) { DeviceState *dev; SysBusDevice *d; unsigned int i; assert(parent_name); if (kvm_ioapic_in_kernel()) { dev = qdev_create(NULL, TYPE_KVM_IOAPIC); } else { dev = qdev_create(NULL, TYPE_IOAPIC); } object_property_add_child(object_resolve_path(parent_name, NULL), "ioapic", OBJECT(dev), NULL); qdev_init_nofail(dev); d = SYS_BUS_DEVICE(dev); sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); for (i = 0; i < IOAPIC_NUM_PINS; i++) { gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); } } struct setup_data { uint64_t next; uint32_t type; uint32_t len; uint8_t data[]; } __attribute__((packed)); /* * The entry point into the kernel for PVH boot is different from * the native entry point. The PVH entry is defined by the x86/HVM * direct boot ABI and is available in an ELFNOTE in the kernel binary. * * This function is passed to load_elf() when it is called from * load_elfboot() which then additionally checks for an ELF Note of * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to * parse the PVH entry address from the ELF Note. * * Due to trickery in elf_opts.h, load_elf() is actually available as * load_elf32() or load_elf64() and this routine needs to be able * to deal with being called as 32 or 64 bit. * * The address of the PVH entry point is saved to the 'pvh_start_addr' * global variable. (although the entry point is 32-bit, the kernel * binary can be either 32-bit or 64-bit). */ static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) { size_t *elf_note_data_addr; /* Check if ELF Note header passed in is valid */ if (arg1 == NULL) { return 0; } if (is64) { struct elf64_note *nhdr64 = (struct elf64_note *)arg1; uint64_t nhdr_size64 = sizeof(struct elf64_note); uint64_t phdr_align = *(uint64_t *)arg2; uint64_t nhdr_namesz = nhdr64->n_namesz; elf_note_data_addr = ((void *)nhdr64) + nhdr_size64 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); } else { struct elf32_note *nhdr32 = (struct elf32_note *)arg1; uint32_t nhdr_size32 = sizeof(struct elf32_note); uint32_t phdr_align = *(uint32_t *)arg2; uint32_t nhdr_namesz = nhdr32->n_namesz; elf_note_data_addr = ((void *)nhdr32) + nhdr_size32 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); } pvh_start_addr = *elf_note_data_addr; return pvh_start_addr; } static bool load_elfboot(const char *kernel_filename, int kernel_file_size, uint8_t *header, size_t pvh_xen_start_addr, FWCfgState *fw_cfg) { uint32_t flags = 0; uint32_t mh_load_addr = 0; uint32_t elf_kernel_size = 0; uint64_t elf_entry; uint64_t elf_low, elf_high; int kernel_size; if (ldl_p(header) != 0x464c457f) { return false; /* no elfboot */ } bool elf_is64 = header[EI_CLASS] == ELFCLASS64; flags = elf_is64 ? ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ error_report("elfboot unsupported flags = %x", flags); exit(1); } uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; kernel_size = load_elf(kernel_filename, read_pvh_start_addr, NULL, &elf_note_type, &elf_entry, &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 0, 0); if (kernel_size < 0) { error_report("Error while loading elf kernel"); exit(1); } mh_load_addr = elf_low; elf_kernel_size = elf_high - elf_low; if (pvh_start_addr == 0) { error_report("Error loading uncompressed kernel without PVH ELF Note"); exit(1); } fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); return true; } void x86_load_linux(X86MachineState *x86ms, FWCfgState *fw_cfg, int acpi_data_size, bool pvh_enabled, bool linuxboot_dma_enabled) { uint16_t protocol; int setup_size, kernel_size, cmdline_size; int dtb_size, setup_data_offset; uint32_t initrd_max; uint8_t header[8192], *setup, *kernel; hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f; char *vmode; MachineState *machine = MACHINE(x86ms); struct setup_data *setup_data; const char *kernel_filename = machine->kernel_filename; const char *initrd_filename = machine->initrd_filename; const char *dtb_filename = machine->dtb; const char *kernel_cmdline = machine->kernel_cmdline; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f) { fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } kernel_size = get_file_size(f); if (!kernel_size || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } /* kernel protocol version */ if (ldl_p(header + 0x202) == 0x53726448) { protocol = lduw_p(header + 0x206); } else { /* * This could be a multiboot kernel. If it is, let's stop treating it * like a Linux kernel. * Note: some multiboot images could be in the ELF format (the same of * PVH), so we try multiboot first since we check the multiboot magic * header before to load it. */ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, kernel_size, header)) { return; } /* * Check if the file is an uncompressed kernel file (ELF) and load it, * saving the PVH entry point used by the x86/HVM direct boot ABI. * If load_elfboot() is successful, populate the fw_cfg info. */ if (pvh_enabled && load_elfboot(kernel_filename, kernel_size, header, pvh_start_addr, fw_cfg)) { fclose(f); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, header, sizeof(header)); /* load initrd */ if (initrd_filename) { GMappedFile *mapped_file; gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); if (!mapped_file) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } x86ms->initrd_mapped_file = mapped_file; initrd_data = g_mapped_file_get_contents(mapped_file); initrd_size = g_mapped_file_get_length(mapped_file); initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max - initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); } option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "pvh.bin"; nb_option_roms++; return; } protocol = 0; } if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; } /* highest address for loading the initrd */ if (protocol >= 0x20c && lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { /* * Linux has supported initrd up to 4 GB for a very long time (2007, * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), * though it only sets initrd_max to 2 GB to "work around bootloader * bugs". Luckily, QEMU firmware(which does something like bootloader) * has supported this. * * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can * be loaded into any address. * * In addition, initrd_max is uint32_t simply because QEMU doesn't * support the 64-bit boot protocol (specifically the ext_ramdisk_image * field). * * Therefore here just limit initrd_max to UINT32_MAX simply as well. */ initrd_max = UINT32_MAX; } else if (protocol >= 0x203) { initrd_max = ldl_p(header + 0x22c); } else { initrd_max = 0x37ffffff; } if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; } fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); if (protocol >= 0x202) { stl_p(header + 0x228, cmdline_addr); } else { stw_p(header + 0x20, 0xA33F); stw_p(header + 0x22, cmdline_addr - real_addr); } /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; const char *end; int ret; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { ret = qemu_strtoui(vmode, &end, 0, &video_mode); if (ret != 0 || (*end && *end != ' ')) { fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); exit(1); } } stw_p(header + 0x1fa, video_mode); } /* loader type */ /* * High nybble = B reserved for QEMU; low nybble is revision number. * If this code is substantially changed, you may want to consider * incrementing the revision. */ if (protocol >= 0x200) { header[0x210] = 0xB0; } /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); } /* load initrd */ if (initrd_filename) { GMappedFile *mapped_file; gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); if (!mapped_file) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } x86ms->initrd_mapped_file = mapped_file; initrd_data = g_mapped_file_get_contents(mapped_file); initrd_size = g_mapped_file_get_length(mapped_file); if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max - initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); stl_p(header + 0x218, initrd_addr); stl_p(header + 0x21c, initrd_size); } /* load kernel and setup */ setup_size = header[0x1f1]; if (setup_size == 0) { setup_size = 4; } setup_size = (setup_size + 1) * 512; if (setup_size > kernel_size) { fprintf(stderr, "qemu: invalid kernel header\n"); exit(1); } kernel_size -= setup_size; setup = g_malloc(setup_size); kernel = g_malloc(kernel_size); fseek(f, 0, SEEK_SET); if (fread(setup, 1, setup_size, f) != setup_size) { fprintf(stderr, "fread() failed\n"); exit(1); } if (fread(kernel, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "fread() failed\n"); exit(1); } fclose(f); /* append dtb to kernel */ if (dtb_filename) { if (protocol < 0x209) { fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); exit(1); } dtb_size = get_image_size(dtb_filename); if (dtb_size <= 0) { fprintf(stderr, "qemu: error reading dtb %s: %s\n", dtb_filename, strerror(errno)); exit(1); } setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; kernel = g_realloc(kernel, kernel_size); stq_p(header + 0x250, prot_addr + setup_data_offset); setup_data = (struct setup_data *)(kernel + setup_data_offset); setup_data->next = 0; setup_data->type = cpu_to_le32(SETUP_DTB); setup_data->len = cpu_to_le32(dtb_size); load_image_size(dtb_filename, setup_data->data, dtb_size); } memcpy(setup, header, MIN(sizeof(header), setup_size)); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "linuxboot.bin"; if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { option_rom[nb_option_roms].name = "linuxboot_dma.bin"; } nb_option_roms++; } void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) { char *filename; MemoryRegion *bios, *isa_bios; int bios_size, isa_bios_size; int ret; /* BIOS load */ if (bios_name == NULL) { bios_name = BIOS_FILENAME; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = get_image_size(filename); } else { bios_size = -1; } if (bios_size <= 0 || (bios_size % 65536) != 0) { goto bios_error; } bios = g_malloc(sizeof(*bios)); memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); if (!isapc_ram_fw) { memory_region_set_readonly(bios, true); } ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); if (ret != 0) { bios_error: fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); exit(1); } g_free(filename); /* map the last 128KB of the BIOS in ISA space */ isa_bios_size = MIN(bios_size, 128 * KiB); isa_bios = g_malloc(sizeof(*isa_bios)); memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, bios_size - isa_bios_size, isa_bios_size); memory_region_add_subregion_overlap(rom_memory, 0x100000 - isa_bios_size, isa_bios, 1); if (!isapc_ram_fw) { memory_region_set_readonly(isa_bios, true); } /* map all the bios at the top of memory */ memory_region_add_subregion(rom_memory, (uint32_t)(-bios_size), bios); } static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); uint64_t value = x86ms->max_ram_below_4g; visit_type_size(v, name, &value, errp); } static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); Error *error = NULL; uint64_t value; visit_type_size(v, name, &value, &error); if (error) { error_propagate(errp, error); return; } if (value > 4 * GiB) { error_setg(&error, "Machine option 'max-ram-below-4g=%"PRIu64 "' expects size less than or equal to 4G", value); error_propagate(errp, error); return; } if (value < 1 * MiB) { warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," "BIOS may not work with less than 1MiB", value); } x86ms->max_ram_below_4g = value; } bool x86_machine_is_smm_enabled(X86MachineState *x86ms) { bool smm_available = false; if (x86ms->smm == ON_OFF_AUTO_OFF) { return false; } if (tcg_enabled() || qtest_enabled()) { smm_available = true; } else if (kvm_enabled()) { smm_available = kvm_has_smm(); } if (smm_available) { return true; } if (x86ms->smm == ON_OFF_AUTO_ON) { error_report("System Management Mode not supported by this hypervisor."); exit(1); } return false; } static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); OnOffAuto smm = x86ms->smm; visit_type_OnOffAuto(v, name, &smm, errp); } static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); visit_type_OnOffAuto(v, name, &x86ms->smm, errp); } bool x86_machine_is_acpi_enabled(X86MachineState *x86ms) { if (x86ms->acpi == ON_OFF_AUTO_OFF) { return false; } return true; } static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); OnOffAuto acpi = x86ms->acpi; visit_type_OnOffAuto(v, name, &acpi, errp); } static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { X86MachineState *x86ms = X86_MACHINE(obj); visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); } static void x86_machine_initfn(Object *obj) { X86MachineState *x86ms = X86_MACHINE(obj); x86ms->smm = ON_OFF_AUTO_AUTO; x86ms->acpi = ON_OFF_AUTO_AUTO; x86ms->max_ram_below_4g = 0; /* use default */ x86ms->smp_dies = 1; x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx; x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid; x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids; x86ms->apicid_pkg_offset = apicid_pkg_offset; } static void x86_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); NMIClass *nc = NMI_CLASS(oc); mc->cpu_index_to_instance_props = x86_cpu_index_to_props; mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; x86mc->compat_apic_id_mode = false; x86mc->save_tsc_khz = true; nc->nmi_monitor_handler = x86_nmi; object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size", x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g, NULL, NULL, &error_abort); object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", x86_machine_get_smm, x86_machine_set_smm, NULL, NULL, &error_abort); object_class_property_set_description(oc, X86_MACHINE_SMM, "Enable SMM", &error_abort); object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", x86_machine_get_acpi, x86_machine_set_acpi, NULL, NULL, &error_abort); object_class_property_set_description(oc, X86_MACHINE_ACPI, "Enable ACPI", &error_abort); } static const TypeInfo x86_machine_info = { .name = TYPE_X86_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(X86MachineState), .instance_init = x86_machine_initfn, .class_size = sizeof(X86MachineClass), .class_init = x86_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_NMI }, { } }, }; static void x86_machine_register_types(void) { type_register_static(&x86_machine_info); } type_init(x86_machine_register_types)