// SPDX-License-Identifier: GPL-2.0-or-later /* Network filesystem high-level read support. * * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include #include #include #include "internal.h" /* * Clear the unread part of an I/O request. */ static void netfs_clear_unread(struct netfs_io_subrequest *subreq) { struct iov_iter iter; iov_iter_xarray(&iter, ITER_DEST, &subreq->rreq->mapping->i_pages, subreq->start + subreq->transferred, subreq->len - subreq->transferred); iov_iter_zero(iov_iter_count(&iter), &iter); } static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, bool was_async) { struct netfs_io_subrequest *subreq = priv; netfs_subreq_terminated(subreq, transferred_or_error, was_async); } /* * Issue a read against the cache. * - Eats the caller's ref on subreq. */ static void netfs_read_from_cache(struct netfs_io_request *rreq, struct netfs_io_subrequest *subreq, enum netfs_read_from_hole read_hole) { struct netfs_cache_resources *cres = &rreq->cache_resources; struct iov_iter iter; netfs_stat(&netfs_n_rh_read); iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start + subreq->transferred, subreq->len - subreq->transferred); cres->ops->read(cres, subreq->start, &iter, read_hole, netfs_cache_read_terminated, subreq); } /* * Fill a subrequest region with zeroes. */ static void netfs_fill_with_zeroes(struct netfs_io_request *rreq, struct netfs_io_subrequest *subreq) { netfs_stat(&netfs_n_rh_zero); __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); netfs_subreq_terminated(subreq, 0, false); } /* * Ask the netfs to issue a read request to the server for us. * * The netfs is expected to read from subreq->pos + subreq->transferred to * subreq->pos + subreq->len - 1. It may not backtrack and write data into the * buffer prior to the transferred point as it might clobber dirty data * obtained from the cache. * * Alternatively, the netfs is allowed to indicate one of two things: * * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and * make progress. * * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be * cleared. */ static void netfs_read_from_server(struct netfs_io_request *rreq, struct netfs_io_subrequest *subreq) { netfs_stat(&netfs_n_rh_download); rreq->netfs_ops->issue_read(subreq); } /* * Release those waiting. */ static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async) { trace_netfs_rreq(rreq, netfs_rreq_trace_done); netfs_clear_subrequests(rreq, was_async); netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete); } /* * Deal with the completion of writing the data to the cache. We have to clear * the PG_fscache bits on the folios involved and release the caller's ref. * * May be called in softirq mode and we inherit a ref from the caller. */ static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq, bool was_async) { struct netfs_io_subrequest *subreq; struct folio *folio; pgoff_t unlocked = 0; bool have_unlocked = false; rcu_read_lock(); list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) { if (xas_retry(&xas, folio)) continue; /* We might have multiple writes from the same huge * folio, but we mustn't unlock a folio more than once. */ if (have_unlocked && folio_index(folio) <= unlocked) continue; unlocked = folio_index(folio); folio_end_fscache(folio); have_unlocked = true; } } rcu_read_unlock(); netfs_rreq_completed(rreq, was_async); } static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, bool was_async) { struct netfs_io_subrequest *subreq = priv; struct netfs_io_request *rreq = subreq->rreq; if (IS_ERR_VALUE(transferred_or_error)) { netfs_stat(&netfs_n_rh_write_failed); trace_netfs_failure(rreq, subreq, transferred_or_error, netfs_fail_copy_to_cache); } else { netfs_stat(&netfs_n_rh_write_done); } trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); /* If we decrement nr_copy_ops to 0, the ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_copy_ops)) netfs_rreq_unmark_after_write(rreq, was_async); netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); } /* * Perform any outstanding writes to the cache. We inherit a ref from the * caller. */ static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq) { struct netfs_cache_resources *cres = &rreq->cache_resources; struct netfs_io_subrequest *subreq, *next, *p; struct iov_iter iter; int ret; trace_netfs_rreq(rreq, netfs_rreq_trace_copy); /* We don't want terminating writes trying to wake us up whilst we're * still going through the list. */ atomic_inc(&rreq->nr_copy_ops); list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) { list_del_init(&subreq->rreq_link); netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_no_copy); } } list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { /* Amalgamate adjacent writes */ while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { next = list_next_entry(subreq, rreq_link); if (next->start != subreq->start + subreq->len) break; subreq->len += next->len; list_del_init(&next->rreq_link); netfs_put_subrequest(next, false, netfs_sreq_trace_put_merged); } ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, rreq->i_size, true); if (ret < 0) { trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); continue; } iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages, subreq->start, subreq->len); atomic_inc(&rreq->nr_copy_ops); netfs_stat(&netfs_n_rh_write); netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache); trace_netfs_sreq(subreq, netfs_sreq_trace_write); cres->ops->write(cres, subreq->start, &iter, netfs_rreq_copy_terminated, subreq); } /* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_copy_ops)) netfs_rreq_unmark_after_write(rreq, false); } static void netfs_rreq_write_to_cache_work(struct work_struct *work) { struct netfs_io_request *rreq = container_of(work, struct netfs_io_request, work); netfs_rreq_do_write_to_cache(rreq); } static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) { rreq->work.func = netfs_rreq_write_to_cache_work; if (!queue_work(system_unbound_wq, &rreq->work)) BUG(); } /* * Handle a short read. */ static void netfs_rreq_short_read(struct netfs_io_request *rreq, struct netfs_io_subrequest *subreq) { __clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); netfs_stat(&netfs_n_rh_short_read); trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read); atomic_inc(&rreq->nr_outstanding); if (subreq->source == NETFS_READ_FROM_CACHE) netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR); else netfs_read_from_server(rreq, subreq); } /* * Resubmit any short or failed operations. Returns true if we got the rreq * ref back. */ static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq) { struct netfs_io_subrequest *subreq; WARN_ON(in_interrupt()); trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); /* We don't want terminating submissions trying to wake us up whilst * we're still going through the list. */ atomic_inc(&rreq->nr_outstanding); __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { if (subreq->error) { if (subreq->source != NETFS_READ_FROM_CACHE) break; subreq->source = NETFS_DOWNLOAD_FROM_SERVER; subreq->error = 0; netfs_stat(&netfs_n_rh_download_instead); trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); atomic_inc(&rreq->nr_outstanding); netfs_read_from_server(rreq, subreq); } else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) { netfs_rreq_short_read(rreq, subreq); } } /* If we decrement nr_outstanding to 0, the usage ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_outstanding)) return true; wake_up_var(&rreq->nr_outstanding); return false; } /* * Check to see if the data read is still valid. */ static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq) { struct netfs_io_subrequest *subreq; if (!rreq->netfs_ops->is_still_valid || rreq->netfs_ops->is_still_valid(rreq)) return; list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { if (subreq->source == NETFS_READ_FROM_CACHE) { subreq->error = -ESTALE; __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); } } } /* * Assess the state of a read request and decide what to do next. * * Note that we could be in an ordinary kernel thread, on a workqueue or in * softirq context at this point. We inherit a ref from the caller. */ static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async) { trace_netfs_rreq(rreq, netfs_rreq_trace_assess); again: netfs_rreq_is_still_valid(rreq); if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { if (netfs_rreq_perform_resubmissions(rreq)) goto again; return; } netfs_rreq_unlock_folios(rreq); clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags)) return netfs_rreq_write_to_cache(rreq); netfs_rreq_completed(rreq, was_async); } static void netfs_rreq_work(struct work_struct *work) { struct netfs_io_request *rreq = container_of(work, struct netfs_io_request, work); netfs_rreq_assess(rreq, false); } /* * Handle the completion of all outstanding I/O operations on a read request. * We inherit a ref from the caller. */ static void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async) { if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && was_async) { if (!queue_work(system_unbound_wq, &rreq->work)) BUG(); } else { netfs_rreq_assess(rreq, was_async); } } /** * netfs_subreq_terminated - Note the termination of an I/O operation. * @subreq: The I/O request that has terminated. * @transferred_or_error: The amount of data transferred or an error code. * @was_async: The termination was asynchronous * * This tells the read helper that a contributory I/O operation has terminated, * one way or another, and that it should integrate the results. * * The caller indicates in @transferred_or_error the outcome of the operation, * supplying a positive value to indicate the number of bytes transferred, 0 to * indicate a failure to transfer anything that should be retried or a negative * error code. The helper will look after reissuing I/O operations as * appropriate and writing downloaded data to the cache. * * If @was_async is true, the caller might be running in softirq or interrupt * context and we can't sleep. */ void netfs_subreq_terminated(struct netfs_io_subrequest *subreq, ssize_t transferred_or_error, bool was_async) { struct netfs_io_request *rreq = subreq->rreq; int u; _enter("[%u]{%llx,%lx},%zd", subreq->debug_index, subreq->start, subreq->flags, transferred_or_error); switch (subreq->source) { case NETFS_READ_FROM_CACHE: netfs_stat(&netfs_n_rh_read_done); break; case NETFS_DOWNLOAD_FROM_SERVER: netfs_stat(&netfs_n_rh_download_done); break; default: break; } if (IS_ERR_VALUE(transferred_or_error)) { subreq->error = transferred_or_error; trace_netfs_failure(rreq, subreq, transferred_or_error, netfs_fail_read); goto failed; } if (WARN(transferred_or_error > subreq->len - subreq->transferred, "Subreq overread: R%x[%x] %zd > %zu - %zu", rreq->debug_id, subreq->debug_index, transferred_or_error, subreq->len, subreq->transferred)) transferred_or_error = subreq->len - subreq->transferred; subreq->error = 0; subreq->transferred += transferred_or_error; if (subreq->transferred < subreq->len) goto incomplete; complete: __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags); out: trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); /* If we decrement nr_outstanding to 0, the ref belongs to us. */ u = atomic_dec_return(&rreq->nr_outstanding); if (u == 0) netfs_rreq_terminated(rreq, was_async); else if (u == 1) wake_up_var(&rreq->nr_outstanding); netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); return; incomplete: if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { netfs_clear_unread(subreq); subreq->transferred = subreq->len; goto complete; } if (transferred_or_error == 0) { if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { subreq->error = -ENODATA; goto failed; } } else { __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); } __set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); goto out; failed: if (subreq->source == NETFS_READ_FROM_CACHE) { netfs_stat(&netfs_n_rh_read_failed); set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); } else { netfs_stat(&netfs_n_rh_download_failed); set_bit(NETFS_RREQ_FAILED, &rreq->flags); rreq->error = subreq->error; } goto out; } EXPORT_SYMBOL(netfs_subreq_terminated); static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq, loff_t i_size) { struct netfs_io_request *rreq = subreq->rreq; struct netfs_cache_resources *cres = &rreq->cache_resources; if (cres->ops) return cres->ops->prepare_read(subreq, i_size); if (subreq->start >= rreq->i_size) return NETFS_FILL_WITH_ZEROES; return NETFS_DOWNLOAD_FROM_SERVER; } /* * Work out what sort of subrequest the next one will be. */ static enum netfs_io_source netfs_rreq_prepare_read(struct netfs_io_request *rreq, struct netfs_io_subrequest *subreq) { enum netfs_io_source source; _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); source = netfs_cache_prepare_read(subreq, rreq->i_size); if (source == NETFS_INVALID_READ) goto out; if (source == NETFS_DOWNLOAD_FROM_SERVER) { /* Call out to the netfs to let it shrink the request to fit * its own I/O sizes and boundaries. If it shinks it here, it * will be called again to make simultaneous calls; if it wants * to make serial calls, it can indicate a short read and then * we will call it again. */ if (subreq->len > rreq->i_size - subreq->start) subreq->len = rreq->i_size - subreq->start; if (rreq->netfs_ops->clamp_length && !rreq->netfs_ops->clamp_length(subreq)) { source = NETFS_INVALID_READ; goto out; } } if (WARN_ON(subreq->len == 0)) source = NETFS_INVALID_READ; out: subreq->source = source; trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); return source; } /* * Slice off a piece of a read request and submit an I/O request for it. */ static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq, unsigned int *_debug_index) { struct netfs_io_subrequest *subreq; enum netfs_io_source source; subreq = netfs_alloc_subrequest(rreq); if (!subreq) return false; subreq->debug_index = (*_debug_index)++; subreq->start = rreq->start + rreq->submitted; subreq->len = rreq->len - rreq->submitted; _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted); list_add_tail(&subreq->rreq_link, &rreq->subrequests); /* Call out to the cache to find out what it can do with the remaining * subset. It tells us in subreq->flags what it decided should be done * and adjusts subreq->len down if the subset crosses a cache boundary. * * Then when we hand the subset, it can choose to take a subset of that * (the starts must coincide), in which case, we go around the loop * again and ask it to download the next piece. */ source = netfs_rreq_prepare_read(rreq, subreq); if (source == NETFS_INVALID_READ) goto subreq_failed; atomic_inc(&rreq->nr_outstanding); rreq->submitted += subreq->len; trace_netfs_sreq(subreq, netfs_sreq_trace_submit); switch (source) { case NETFS_FILL_WITH_ZEROES: netfs_fill_with_zeroes(rreq, subreq); break; case NETFS_DOWNLOAD_FROM_SERVER: netfs_read_from_server(rreq, subreq); break; case NETFS_READ_FROM_CACHE: netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE); break; default: BUG(); } return true; subreq_failed: rreq->error = subreq->error; netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed); return false; } /* * Begin the process of reading in a chunk of data, where that data may be * stitched together from multiple sources, including multiple servers and the * local cache. */ int netfs_begin_read(struct netfs_io_request *rreq, bool sync) { unsigned int debug_index = 0; int ret; _enter("R=%x %llx-%llx", rreq->debug_id, rreq->start, rreq->start + rreq->len - 1); if (rreq->len == 0) { pr_err("Zero-sized read [R=%x]\n", rreq->debug_id); netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len); return -EIO; } INIT_WORK(&rreq->work, netfs_rreq_work); if (sync) netfs_get_request(rreq, netfs_rreq_trace_get_hold); /* Chop the read into slices according to what the cache and the netfs * want and submit each one. */ atomic_set(&rreq->nr_outstanding, 1); do { if (!netfs_rreq_submit_slice(rreq, &debug_index)) break; } while (rreq->submitted < rreq->len); if (sync) { /* Keep nr_outstanding incremented so that the ref always belongs to * us, and the service code isn't punted off to a random thread pool to * process. */ for (;;) { wait_var_event(&rreq->nr_outstanding, atomic_read(&rreq->nr_outstanding) == 1); netfs_rreq_assess(rreq, false); if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) break; cond_resched(); } ret = rreq->error; if (ret == 0 && rreq->submitted < rreq->len) { trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read); ret = -EIO; } netfs_put_request(rreq, false, netfs_rreq_trace_put_hold); } else { /* If we decrement nr_outstanding to 0, the ref belongs to us. */ if (atomic_dec_and_test(&rreq->nr_outstanding)) netfs_rreq_assess(rreq, false); ret = 0; } return ret; }