/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_UTIL_H #define _BCACHEFS_UTIL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mean_and_variance.h" #include "darray.h" struct closure; #ifdef CONFIG_BCACHEFS_DEBUG #define EBUG_ON(cond) BUG_ON(cond) #else #define EBUG_ON(cond) #endif #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define CPU_BIG_ENDIAN 0 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ #define CPU_BIG_ENDIAN 1 #endif /* type hackery */ #define type_is_exact(_val, _type) \ __builtin_types_compatible_p(typeof(_val), _type) #define type_is(_val, _type) \ (__builtin_types_compatible_p(typeof(_val), _type) || \ __builtin_types_compatible_p(typeof(_val), const _type)) /* Userspace doesn't align allocations as nicely as the kernel allocators: */ static inline size_t buf_pages(void *p, size_t len) { return DIV_ROUND_UP(len + ((unsigned long) p & (PAGE_SIZE - 1)), PAGE_SIZE); } static inline void vpfree(void *p, size_t size) { if (is_vmalloc_addr(p)) vfree(p); else free_pages((unsigned long) p, get_order(size)); } static inline void *vpmalloc(size_t size, gfp_t gfp_mask) { return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, get_order(size)) ?: __vmalloc(size, gfp_mask); } static inline void kvpfree(void *p, size_t size) { if (size < PAGE_SIZE) kfree(p); else vpfree(p, size); } static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) { return size < PAGE_SIZE ? kmalloc(size, gfp_mask) : vpmalloc(size, gfp_mask); } int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t); #define HEAP(type) \ struct { \ size_t size, used; \ type *data; \ } #define DECLARE_HEAP(type, name) HEAP(type) name #define init_heap(heap, _size, gfp) \ ({ \ (heap)->used = 0; \ (heap)->size = (_size); \ (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ (gfp)); \ }) #define free_heap(heap) \ do { \ kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ (heap)->data = NULL; \ } while (0) #define heap_set_backpointer(h, i, _fn) \ do { \ void (*fn)(typeof(h), size_t) = _fn; \ if (fn) \ fn(h, i); \ } while (0) #define heap_swap(h, i, j, set_backpointer) \ do { \ swap((h)->data[i], (h)->data[j]); \ heap_set_backpointer(h, i, set_backpointer); \ heap_set_backpointer(h, j, set_backpointer); \ } while (0) #define heap_peek(h) \ ({ \ EBUG_ON(!(h)->used); \ (h)->data[0]; \ }) #define heap_full(h) ((h)->used == (h)->size) #define heap_sift_down(h, i, cmp, set_backpointer) \ do { \ size_t _c, _j = i; \ \ for (; _j * 2 + 1 < (h)->used; _j = _c) { \ _c = _j * 2 + 1; \ if (_c + 1 < (h)->used && \ cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ _c++; \ \ if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ break; \ heap_swap(h, _c, _j, set_backpointer); \ } \ } while (0) #define heap_sift_up(h, i, cmp, set_backpointer) \ do { \ while (i) { \ size_t p = (i - 1) / 2; \ if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ break; \ heap_swap(h, i, p, set_backpointer); \ i = p; \ } \ } while (0) #define __heap_add(h, d, cmp, set_backpointer) \ ({ \ size_t _i = (h)->used++; \ (h)->data[_i] = d; \ heap_set_backpointer(h, _i, set_backpointer); \ \ heap_sift_up(h, _i, cmp, set_backpointer); \ _i; \ }) #define heap_add(h, d, cmp, set_backpointer) \ ({ \ bool _r = !heap_full(h); \ if (_r) \ __heap_add(h, d, cmp, set_backpointer); \ _r; \ }) #define heap_add_or_replace(h, new, cmp, set_backpointer) \ do { \ if (!heap_add(h, new, cmp, set_backpointer) && \ cmp(h, new, heap_peek(h)) >= 0) { \ (h)->data[0] = new; \ heap_set_backpointer(h, 0, set_backpointer); \ heap_sift_down(h, 0, cmp, set_backpointer); \ } \ } while (0) #define heap_del(h, i, cmp, set_backpointer) \ do { \ size_t _i = (i); \ \ BUG_ON(_i >= (h)->used); \ (h)->used--; \ if ((_i) < (h)->used) { \ heap_swap(h, _i, (h)->used, set_backpointer); \ heap_sift_up(h, _i, cmp, set_backpointer); \ heap_sift_down(h, _i, cmp, set_backpointer); \ } \ } while (0) #define heap_pop(h, d, cmp, set_backpointer) \ ({ \ bool _r = (h)->used; \ if (_r) { \ (d) = (h)->data[0]; \ heap_del(h, 0, cmp, set_backpointer); \ } \ _r; \ }) #define heap_resort(heap, cmp, set_backpointer) \ do { \ ssize_t _i; \ for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ heap_sift_down(heap, _i, cmp, set_backpointer); \ } while (0) #define ANYSINT_MAX(t) \ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) #include "printbuf.h" #define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) #define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) #define printbuf_str(_buf) bch2_printbuf_str(_buf) #define printbuf_exit(_buf) bch2_printbuf_exit(_buf) #define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) #define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) #define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) #define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) #define prt_newline(_out) bch2_prt_newline(_out) #define prt_tab(_out) bch2_prt_tab(_out) #define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) #define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) #define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) #define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) #define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) #define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) #define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) #define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) #define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) #define prt_bitflags_vector(...) bch2_prt_bitflags_vector(__VA_ARGS__) void bch2_pr_time_units(struct printbuf *, u64); void bch2_prt_datetime(struct printbuf *, time64_t); #ifdef __KERNEL__ static inline void uuid_unparse_lower(u8 *uuid, char *out) { sprintf(out, "%pUb", uuid); } #else #include #endif static inline void pr_uuid(struct printbuf *out, u8 *uuid) { char uuid_str[40]; uuid_unparse_lower(uuid, uuid_str); prt_printf(out, "%s", uuid_str); } int bch2_strtoint_h(const char *, int *); int bch2_strtouint_h(const char *, unsigned int *); int bch2_strtoll_h(const char *, long long *); int bch2_strtoull_h(const char *, unsigned long long *); int bch2_strtou64_h(const char *, u64 *); static inline int bch2_strtol_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch2_strtoint_h(cp, (int *) res); #else return bch2_strtoll_h(cp, (long long *) res); #endif } static inline int bch2_strtoul_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch2_strtouint_h(cp, (unsigned int *) res); #else return bch2_strtoull_h(cp, (unsigned long long *) res); #endif } #define strtoi_h(cp, res) \ ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ : -EINVAL) #define strtoul_safe(cp, var) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = _v; \ _r; \ }) #define strtoul_safe_clamp(cp, var, min, max) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = clamp_t(typeof(var), _v, min, max); \ _r; \ }) #define strtoul_safe_restrict(cp, var, min, max) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r && _v >= min && _v <= max) \ var = _v; \ else \ _r = -EINVAL; \ _r; \ }) #define snprint(out, var) \ prt_printf(out, \ type_is(var, int) ? "%i\n" \ : type_is(var, unsigned) ? "%u\n" \ : type_is(var, long) ? "%li\n" \ : type_is(var, unsigned long) ? "%lu\n" \ : type_is(var, s64) ? "%lli\n" \ : type_is(var, u64) ? "%llu\n" \ : type_is(var, char *) ? "%s\n" \ : "%i\n", var) bool bch2_is_zero(const void *, size_t); u64 bch2_read_flag_list(char *, const char * const[]); void bch2_prt_u64_binary(struct printbuf *, u64, unsigned); void bch2_print_string_as_lines(const char *prefix, const char *lines); typedef DARRAY(unsigned long) bch_stacktrace; int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *); void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *); #define NR_QUANTILES 15 #define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES) #define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES) #define QUANTILE_LAST eytzinger0_last(NR_QUANTILES) struct bch2_quantiles { struct bch2_quantile_entry { u64 m; u64 step; } entries[NR_QUANTILES]; }; struct bch2_time_stat_buffer { unsigned nr; struct bch2_time_stat_buffer_entry { u64 start; u64 end; } entries[32]; }; struct bch2_time_stats { spinlock_t lock; /* all fields are in nanoseconds */ u64 max_duration; u64 min_duration; u64 max_freq; u64 min_freq; u64 last_event; struct bch2_quantiles quantiles; struct mean_and_variance duration_stats; struct mean_and_variance_weighted duration_stats_weighted; struct mean_and_variance freq_stats; struct mean_and_variance_weighted freq_stats_weighted; struct bch2_time_stat_buffer __percpu *buffer; }; #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64); #else static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {} #endif static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) { __bch2_time_stats_update(stats, start, local_clock()); } void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); void bch2_time_stats_exit(struct bch2_time_stats *); void bch2_time_stats_init(struct bch2_time_stats *); #define ewma_add(ewma, val, weight) \ ({ \ typeof(ewma) _ewma = (ewma); \ typeof(weight) _weight = (weight); \ \ (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ }) struct bch_ratelimit { /* Next time we want to do some work, in nanoseconds */ u64 next; /* * Rate at which we want to do work, in units per nanosecond * The units here correspond to the units passed to * bch2_ratelimit_increment() */ unsigned rate; }; static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) { d->next = local_clock(); } u64 bch2_ratelimit_delay(struct bch_ratelimit *); void bch2_ratelimit_increment(struct bch_ratelimit *, u64); struct bch_pd_controller { struct bch_ratelimit rate; unsigned long last_update; s64 last_actual; s64 smoothed_derivative; unsigned p_term_inverse; unsigned d_smooth; unsigned d_term; /* for exporting to sysfs (no effect on behavior) */ s64 last_derivative; s64 last_proportional; s64 last_change; s64 last_target; /* * If true, the rate will not increase if bch2_ratelimit_delay() * is not being called often enough. */ bool backpressure; }; void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); void bch2_pd_controller_init(struct bch_pd_controller *); void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); #define sysfs_pd_controller_attribute(name) \ rw_attribute(name##_rate); \ rw_attribute(name##_rate_bytes); \ rw_attribute(name##_rate_d_term); \ rw_attribute(name##_rate_p_term_inverse); \ read_attribute(name##_rate_debug) #define sysfs_pd_controller_files(name) \ &sysfs_##name##_rate, \ &sysfs_##name##_rate_bytes, \ &sysfs_##name##_rate_d_term, \ &sysfs_##name##_rate_p_term_inverse, \ &sysfs_##name##_rate_debug #define sysfs_pd_controller_show(name, var) \ do { \ sysfs_hprint(name##_rate, (var)->rate.rate); \ sysfs_print(name##_rate_bytes, (var)->rate.rate); \ sysfs_print(name##_rate_d_term, (var)->d_term); \ sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ \ if (attr == &sysfs_##name##_rate_debug) \ bch2_pd_controller_debug_to_text(out, var); \ } while (0) #define sysfs_pd_controller_store(name, var) \ do { \ sysfs_strtoul_clamp(name##_rate, \ (var)->rate.rate, 1, UINT_MAX); \ sysfs_strtoul_clamp(name##_rate_bytes, \ (var)->rate.rate, 1, UINT_MAX); \ sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ (var)->p_term_inverse, 1, INT_MAX); \ } while (0) #define container_of_or_null(ptr, type, member) \ ({ \ typeof(ptr) _ptr = ptr; \ _ptr ? container_of(_ptr, type, member) : NULL; \ }) /* Does linear interpolation between powers of two */ static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) { unsigned fract = x & ~(~0 << fract_bits); x >>= fract_bits; x = 1 << x; x += (x * fract) >> fract_bits; return x; } void bch2_bio_map(struct bio *bio, void *base, size_t); int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); static inline sector_t bdev_sectors(struct block_device *bdev) { return bdev->bd_inode->i_size >> 9; } #define closure_bio_submit(bio, cl) \ do { \ closure_get(cl); \ submit_bio(bio); \ } while (0) #define kthread_wait(cond) \ ({ \ int _ret = 0; \ \ while (1) { \ set_current_state(TASK_INTERRUPTIBLE); \ if (kthread_should_stop()) { \ _ret = -1; \ break; \ } \ \ if (cond) \ break; \ \ schedule(); \ } \ set_current_state(TASK_RUNNING); \ _ret; \ }) #define kthread_wait_freezable(cond) \ ({ \ int _ret = 0; \ while (1) { \ set_current_state(TASK_INTERRUPTIBLE); \ if (kthread_should_stop()) { \ _ret = -1; \ break; \ } \ \ if (cond) \ break; \ \ schedule(); \ try_to_freeze(); \ } \ set_current_state(TASK_RUNNING); \ _ret; \ }) size_t bch2_rand_range(size_t); void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); void memcpy_from_bio(void *, struct bio *, struct bvec_iter); static inline void memcpy_u64s_small(void *dst, const void *src, unsigned u64s) { u64 *d = dst; const u64 *s = src; while (u64s--) *d++ = *s++; } static inline void __memcpy_u64s(void *dst, const void *src, unsigned u64s) { #ifdef CONFIG_X86_64 long d0, d1, d2; asm volatile("rep ; movsq" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (u64s), "1" (dst), "2" (src) : "memory"); #else u64 *d = dst; const u64 *s = src; while (u64s--) *d++ = *s++; #endif } static inline void memcpy_u64s(void *dst, const void *src, unsigned u64s) { EBUG_ON(!(dst >= src + u64s * sizeof(u64) || dst + u64s * sizeof(u64) <= src)); __memcpy_u64s(dst, src, u64s); } static inline void __memmove_u64s_down(void *dst, const void *src, unsigned u64s) { __memcpy_u64s(dst, src, u64s); } static inline void memmove_u64s_down(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst > src); __memmove_u64s_down(dst, src, u64s); } static inline void __memmove_u64s_down_small(void *dst, const void *src, unsigned u64s) { memcpy_u64s_small(dst, src, u64s); } static inline void memmove_u64s_down_small(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst > src); __memmove_u64s_down_small(dst, src, u64s); } static inline void __memmove_u64s_up_small(void *_dst, const void *_src, unsigned u64s) { u64 *dst = (u64 *) _dst + u64s; u64 *src = (u64 *) _src + u64s; while (u64s--) *--dst = *--src; } static inline void memmove_u64s_up_small(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst < src); __memmove_u64s_up_small(dst, src, u64s); } static inline void __memmove_u64s_up(void *_dst, const void *_src, unsigned u64s) { u64 *dst = (u64 *) _dst + u64s - 1; u64 *src = (u64 *) _src + u64s - 1; #ifdef CONFIG_X86_64 long d0, d1, d2; asm volatile("std ;\n" "rep ; movsq\n" "cld ;\n" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (u64s), "1" (dst), "2" (src) : "memory"); #else while (u64s--) *dst-- = *src--; #endif } static inline void memmove_u64s_up(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst < src); __memmove_u64s_up(dst, src, u64s); } static inline void memmove_u64s(void *dst, const void *src, unsigned u64s) { if (dst < src) __memmove_u64s_down(dst, src, u64s); else __memmove_u64s_up(dst, src, u64s); } /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ static inline void memset_u64s_tail(void *s, int c, unsigned bytes) { unsigned rem = round_up(bytes, sizeof(u64)) - bytes; memset(s + bytes, c, rem); } void sort_cmp_size(void *base, size_t num, size_t size, int (*cmp_func)(const void *, const void *, size_t), void (*swap_func)(void *, void *, size_t)); /* just the memmove, doesn't update @_nr */ #define __array_insert_item(_array, _nr, _pos) \ memmove(&(_array)[(_pos) + 1], \ &(_array)[(_pos)], \ sizeof((_array)[0]) * ((_nr) - (_pos))) #define array_insert_item(_array, _nr, _pos, _new_item) \ do { \ __array_insert_item(_array, _nr, _pos); \ (_nr)++; \ (_array)[(_pos)] = (_new_item); \ } while (0) #define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ do { \ (_nr) -= (_nr_to_remove); \ memmove(&(_array)[(_pos)], \ &(_array)[(_pos) + (_nr_to_remove)], \ sizeof((_array)[0]) * ((_nr) - (_pos))); \ } while (0) #define array_remove_item(_array, _nr, _pos) \ array_remove_items(_array, _nr, _pos, 1) static inline void __move_gap(void *array, size_t element_size, size_t nr, size_t size, size_t old_gap, size_t new_gap) { size_t gap_end = old_gap + size - nr; if (new_gap < old_gap) { size_t move = old_gap - new_gap; memmove(array + element_size * (gap_end - move), array + element_size * (old_gap - move), element_size * move); } else if (new_gap > old_gap) { size_t move = new_gap - old_gap; memmove(array + element_size * old_gap, array + element_size * gap_end, element_size * move); } } /* Move the gap in a gap buffer: */ #define move_gap(_array, _nr, _size, _old_gap, _new_gap) \ __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap) #define bubble_sort(_base, _nr, _cmp) \ do { \ ssize_t _i, _last; \ bool _swapped = true; \ \ for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ _swapped = false; \ for (_i = 0; _i < _last; _i++) \ if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ swap((_base)[_i], (_base)[_i + 1]); \ _swapped = true; \ } \ } \ } while (0) static inline u64 percpu_u64_get(u64 __percpu *src) { u64 ret = 0; int cpu; for_each_possible_cpu(cpu) ret += *per_cpu_ptr(src, cpu); return ret; } static inline void percpu_u64_set(u64 __percpu *dst, u64 src) { int cpu; for_each_possible_cpu(cpu) *per_cpu_ptr(dst, cpu) = 0; this_cpu_write(*dst, src); } static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) { unsigned i; for (i = 0; i < nr; i++) acc[i] += src[i]; } static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, unsigned nr) { int cpu; for_each_possible_cpu(cpu) acc_u64s(acc, per_cpu_ptr(src, cpu), nr); } static inline void percpu_memset(void __percpu *p, int c, size_t bytes) { int cpu; for_each_possible_cpu(cpu) memset(per_cpu_ptr(p, cpu), c, bytes); } u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); #define cmp_int(l, r) ((l > r) - (l < r)) static inline int u8_cmp(u8 l, u8 r) { return cmp_int(l, r); } static inline int cmp_le32(__le32 l, __le32 r) { return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); } #include #endif /* _BCACHEFS_UTIL_H */