// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "buckets.h" #include "journal.h" #include "replicas.h" #include "super-io.h" static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, struct bch_replicas_cpu *); /* Some (buggy!) compilers don't allow memcmp to be passed as a pointer */ static int bch2_memcmp(const void *l, const void *r, size_t size) { return memcmp(l, r, size); } /* Replicas tracking - in memory: */ static void verify_replicas_entry(struct bch_replicas_entry *e) { #ifdef CONFIG_BCACHEFS_DEBUG unsigned i; BUG_ON(e->data_type >= BCH_DATA_NR); BUG_ON(!e->nr_devs); BUG_ON(e->nr_required > 1 && e->nr_required >= e->nr_devs); for (i = 0; i + 1 < e->nr_devs; i++) BUG_ON(e->devs[i] >= e->devs[i + 1]); #endif } void bch2_replicas_entry_sort(struct bch_replicas_entry *e) { bubble_sort(e->devs, e->nr_devs, u8_cmp); } static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) { eytzinger0_sort(r->entries, r->nr, r->entry_size, bch2_memcmp, NULL); } static void bch2_replicas_entry_v0_to_text(struct printbuf *out, struct bch_replicas_entry_v0 *e) { unsigned i; if (e->data_type < BCH_DATA_NR) prt_printf(out, "%s", bch2_data_types[e->data_type]); else prt_printf(out, "(invalid data type %u)", e->data_type); prt_printf(out, ": %u [", e->nr_devs); for (i = 0; i < e->nr_devs; i++) prt_printf(out, i ? " %u" : "%u", e->devs[i]); prt_printf(out, "]"); } void bch2_replicas_entry_to_text(struct printbuf *out, struct bch_replicas_entry *e) { unsigned i; if (e->data_type < BCH_DATA_NR) prt_printf(out, "%s", bch2_data_types[e->data_type]); else prt_printf(out, "(invalid data type %u)", e->data_type); prt_printf(out, ": %u/%u [", e->nr_required, e->nr_devs); for (i = 0; i < e->nr_devs; i++) prt_printf(out, i ? " %u" : "%u", e->devs[i]); prt_printf(out, "]"); } int bch2_replicas_entry_validate(struct bch_replicas_entry *r, struct bch_sb *sb, struct printbuf *err) { if (!r->nr_devs) { prt_printf(err, "no devices in entry "); goto bad; } if (r->nr_required > 1 && r->nr_required >= r->nr_devs) { prt_printf(err, "bad nr_required in entry "); goto bad; } for (unsigned i = 0; i < r->nr_devs; i++) if (!bch2_dev_exists(sb, r->devs[i])) { prt_printf(err, "invalid device %u in entry ", r->devs[i]); goto bad; } return 0; bad: bch2_replicas_entry_to_text(err, r); return -BCH_ERR_invalid_replicas_entry; } void bch2_cpu_replicas_to_text(struct printbuf *out, struct bch_replicas_cpu *r) { struct bch_replicas_entry *e; bool first = true; for_each_cpu_replicas_entry(r, e) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_to_text(out, e); } } static void extent_to_replicas(struct bkey_s_c k, struct bch_replicas_entry *r) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; r->nr_required = 1; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.ptr.cached) continue; if (!p.has_ec) r->devs[r->nr_devs++] = p.ptr.dev; else r->nr_required = 0; } } static void stripe_to_replicas(struct bkey_s_c k, struct bch_replicas_entry *r) { struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); const struct bch_extent_ptr *ptr; r->nr_required = s.v->nr_blocks - s.v->nr_redundant; for (ptr = s.v->ptrs; ptr < s.v->ptrs + s.v->nr_blocks; ptr++) r->devs[r->nr_devs++] = ptr->dev; } void bch2_bkey_to_replicas(struct bch_replicas_entry *e, struct bkey_s_c k) { e->nr_devs = 0; switch (k.k->type) { case KEY_TYPE_btree_ptr: case KEY_TYPE_btree_ptr_v2: e->data_type = BCH_DATA_btree; extent_to_replicas(k, e); break; case KEY_TYPE_extent: case KEY_TYPE_reflink_v: e->data_type = BCH_DATA_user; extent_to_replicas(k, e); break; case KEY_TYPE_stripe: e->data_type = BCH_DATA_parity; stripe_to_replicas(k, e); break; } bch2_replicas_entry_sort(e); } void bch2_devlist_to_replicas(struct bch_replicas_entry *e, enum bch_data_type data_type, struct bch_devs_list devs) { unsigned i; BUG_ON(!data_type || data_type == BCH_DATA_sb || data_type >= BCH_DATA_NR); e->data_type = data_type; e->nr_devs = 0; e->nr_required = 1; for (i = 0; i < devs.nr; i++) e->devs[e->nr_devs++] = devs.devs[i]; bch2_replicas_entry_sort(e); } static struct bch_replicas_cpu cpu_replicas_add_entry(struct bch_fs *c, struct bch_replicas_cpu *old, struct bch_replicas_entry *new_entry) { unsigned i; struct bch_replicas_cpu new = { .nr = old->nr + 1, .entry_size = max_t(unsigned, old->entry_size, replicas_entry_bytes(new_entry)), }; for (i = 0; i < new_entry->nr_devs; i++) BUG_ON(!bch2_dev_exists2(c, new_entry->devs[i])); BUG_ON(!new_entry->data_type); verify_replicas_entry(new_entry); new.entries = kcalloc(new.nr, new.entry_size, GFP_KERNEL); if (!new.entries) return new; for (i = 0; i < old->nr; i++) memcpy(cpu_replicas_entry(&new, i), cpu_replicas_entry(old, i), old->entry_size); memcpy(cpu_replicas_entry(&new, old->nr), new_entry, replicas_entry_bytes(new_entry)); bch2_cpu_replicas_sort(&new); return new; } static inline int __replicas_entry_idx(struct bch_replicas_cpu *r, struct bch_replicas_entry *search) { int idx, entry_size = replicas_entry_bytes(search); if (unlikely(entry_size > r->entry_size)) return -1; verify_replicas_entry(search); #define entry_cmp(_l, _r, size) memcmp(_l, _r, entry_size) idx = eytzinger0_find(r->entries, r->nr, r->entry_size, entry_cmp, search); #undef entry_cmp return idx < r->nr ? idx : -1; } int bch2_replicas_entry_idx(struct bch_fs *c, struct bch_replicas_entry *search) { bch2_replicas_entry_sort(search); return __replicas_entry_idx(&c->replicas, search); } static bool __replicas_has_entry(struct bch_replicas_cpu *r, struct bch_replicas_entry *search) { return __replicas_entry_idx(r, search) >= 0; } bool bch2_replicas_marked(struct bch_fs *c, struct bch_replicas_entry *search) { bool marked; if (!search->nr_devs) return true; verify_replicas_entry(search); percpu_down_read(&c->mark_lock); marked = __replicas_has_entry(&c->replicas, search) && (likely((!c->replicas_gc.entries)) || __replicas_has_entry(&c->replicas_gc, search)); percpu_up_read(&c->mark_lock); return marked; } static void __replicas_table_update(struct bch_fs_usage *dst, struct bch_replicas_cpu *dst_r, struct bch_fs_usage *src, struct bch_replicas_cpu *src_r) { int src_idx, dst_idx; *dst = *src; for (src_idx = 0; src_idx < src_r->nr; src_idx++) { if (!src->replicas[src_idx]) continue; dst_idx = __replicas_entry_idx(dst_r, cpu_replicas_entry(src_r, src_idx)); BUG_ON(dst_idx < 0); dst->replicas[dst_idx] = src->replicas[src_idx]; } } static void __replicas_table_update_pcpu(struct bch_fs_usage __percpu *dst_p, struct bch_replicas_cpu *dst_r, struct bch_fs_usage __percpu *src_p, struct bch_replicas_cpu *src_r) { unsigned src_nr = sizeof(struct bch_fs_usage) / sizeof(u64) + src_r->nr; struct bch_fs_usage *dst, *src = (void *) bch2_acc_percpu_u64s((u64 __percpu *) src_p, src_nr); preempt_disable(); dst = this_cpu_ptr(dst_p); preempt_enable(); __replicas_table_update(dst, dst_r, src, src_r); } /* * Resize filesystem accounting: */ static int replicas_table_update(struct bch_fs *c, struct bch_replicas_cpu *new_r) { struct bch_fs_usage __percpu *new_usage[JOURNAL_BUF_NR]; struct bch_fs_usage_online *new_scratch = NULL; struct bch_fs_usage __percpu *new_gc = NULL; struct bch_fs_usage *new_base = NULL; unsigned i, bytes = sizeof(struct bch_fs_usage) + sizeof(u64) * new_r->nr; unsigned scratch_bytes = sizeof(struct bch_fs_usage_online) + sizeof(u64) * new_r->nr; int ret = 0; memset(new_usage, 0, sizeof(new_usage)); for (i = 0; i < ARRAY_SIZE(new_usage); i++) if (!(new_usage[i] = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_KERNEL))) goto err; if (!(new_base = kzalloc(bytes, GFP_KERNEL)) || !(new_scratch = kmalloc(scratch_bytes, GFP_KERNEL)) || (c->usage_gc && !(new_gc = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_KERNEL)))) goto err; for (i = 0; i < ARRAY_SIZE(new_usage); i++) if (c->usage[i]) __replicas_table_update_pcpu(new_usage[i], new_r, c->usage[i], &c->replicas); if (c->usage_base) __replicas_table_update(new_base, new_r, c->usage_base, &c->replicas); if (c->usage_gc) __replicas_table_update_pcpu(new_gc, new_r, c->usage_gc, &c->replicas); for (i = 0; i < ARRAY_SIZE(new_usage); i++) swap(c->usage[i], new_usage[i]); swap(c->usage_base, new_base); swap(c->usage_scratch, new_scratch); swap(c->usage_gc, new_gc); swap(c->replicas, *new_r); out: free_percpu(new_gc); kfree(new_scratch); for (i = 0; i < ARRAY_SIZE(new_usage); i++) free_percpu(new_usage[i]); kfree(new_base); return ret; err: bch_err(c, "error updating replicas table: memory allocation failure"); ret = -BCH_ERR_ENOMEM_replicas_table; goto out; } static unsigned reserve_journal_replicas(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_replicas_entry *e; unsigned journal_res_u64s = 0; /* nr_inodes: */ journal_res_u64s += DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); /* key_version: */ journal_res_u64s += DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); /* persistent_reserved: */ journal_res_u64s += DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)) * BCH_REPLICAS_MAX; for_each_cpu_replicas_entry(r, e) journal_res_u64s += DIV_ROUND_UP(sizeof(struct jset_entry_data_usage) + e->nr_devs, sizeof(u64)); return journal_res_u64s; } noinline static int bch2_mark_replicas_slowpath(struct bch_fs *c, struct bch_replicas_entry *new_entry) { struct bch_replicas_cpu new_r, new_gc; int ret = 0; verify_replicas_entry(new_entry); memset(&new_r, 0, sizeof(new_r)); memset(&new_gc, 0, sizeof(new_gc)); mutex_lock(&c->sb_lock); if (c->replicas_gc.entries && !__replicas_has_entry(&c->replicas_gc, new_entry)) { new_gc = cpu_replicas_add_entry(c, &c->replicas_gc, new_entry); if (!new_gc.entries) { ret = -BCH_ERR_ENOMEM_cpu_replicas; goto err; } } if (!__replicas_has_entry(&c->replicas, new_entry)) { new_r = cpu_replicas_add_entry(c, &c->replicas, new_entry); if (!new_r.entries) { ret = -BCH_ERR_ENOMEM_cpu_replicas; goto err; } ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r); if (ret) goto err; bch2_journal_entry_res_resize(&c->journal, &c->replicas_journal_res, reserve_journal_replicas(c, &new_r)); } if (!new_r.entries && !new_gc.entries) goto out; /* allocations done, now commit: */ if (new_r.entries) bch2_write_super(c); /* don't update in memory replicas until changes are persistent */ percpu_down_write(&c->mark_lock); if (new_r.entries) ret = replicas_table_update(c, &new_r); if (new_gc.entries) swap(new_gc, c->replicas_gc); percpu_up_write(&c->mark_lock); out: mutex_unlock(&c->sb_lock); kfree(new_r.entries); kfree(new_gc.entries); return ret; err: bch_err_msg(c, ret, "adding replicas entry"); goto out; } int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *r) { return likely(bch2_replicas_marked(c, r)) ? 0 : bch2_mark_replicas_slowpath(c, r); } /* replicas delta list: */ int bch2_replicas_delta_list_mark(struct bch_fs *c, struct replicas_delta_list *r) { struct replicas_delta *d = r->d; struct replicas_delta *top = (void *) r->d + r->used; int ret = 0; for (d = r->d; !ret && d != top; d = replicas_delta_next(d)) ret = bch2_mark_replicas(c, &d->r); return ret; } /* * Old replicas_gc mechanism: only used for journal replicas entries now, should * die at some point: */ int bch2_replicas_gc_end(struct bch_fs *c, int ret) { lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); percpu_down_write(&c->mark_lock); ret = ret ?: bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc) ?: replicas_table_update(c, &c->replicas_gc); kfree(c->replicas_gc.entries); c->replicas_gc.entries = NULL; percpu_up_write(&c->mark_lock); if (!ret) bch2_write_super(c); mutex_unlock(&c->sb_lock); return ret; } int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) { struct bch_replicas_entry *e; unsigned i = 0; lockdep_assert_held(&c->replicas_gc_lock); mutex_lock(&c->sb_lock); BUG_ON(c->replicas_gc.entries); c->replicas_gc.nr = 0; c->replicas_gc.entry_size = 0; for_each_cpu_replicas_entry(&c->replicas, e) if (!((1 << e->data_type) & typemask)) { c->replicas_gc.nr++; c->replicas_gc.entry_size = max_t(unsigned, c->replicas_gc.entry_size, replicas_entry_bytes(e)); } c->replicas_gc.entries = kcalloc(c->replicas_gc.nr, c->replicas_gc.entry_size, GFP_KERNEL); if (!c->replicas_gc.entries) { mutex_unlock(&c->sb_lock); bch_err(c, "error allocating c->replicas_gc"); return -BCH_ERR_ENOMEM_replicas_gc; } for_each_cpu_replicas_entry(&c->replicas, e) if (!((1 << e->data_type) & typemask)) memcpy(cpu_replicas_entry(&c->replicas_gc, i++), e, c->replicas_gc.entry_size); bch2_cpu_replicas_sort(&c->replicas_gc); mutex_unlock(&c->sb_lock); return 0; } /* * New much simpler mechanism for clearing out unneeded replicas entries - drop * replicas entries that have 0 sectors used. * * However, we don't track sector counts for journal usage, so this doesn't drop * any BCH_DATA_journal entries; the old bch2_replicas_gc_(start|end) mechanism * is retained for that. */ int bch2_replicas_gc2(struct bch_fs *c) { struct bch_replicas_cpu new = { 0 }; unsigned i, nr; int ret = 0; bch2_journal_meta(&c->journal); retry: nr = READ_ONCE(c->replicas.nr); new.entry_size = READ_ONCE(c->replicas.entry_size); new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL); if (!new.entries) { bch_err(c, "error allocating c->replicas_gc"); return -BCH_ERR_ENOMEM_replicas_gc; } mutex_lock(&c->sb_lock); percpu_down_write(&c->mark_lock); if (nr != c->replicas.nr || new.entry_size != c->replicas.entry_size) { percpu_up_write(&c->mark_lock); mutex_unlock(&c->sb_lock); kfree(new.entries); goto retry; } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); if (e->data_type == BCH_DATA_journal || c->usage_base->replicas[i] || percpu_u64_get(&c->usage[0]->replicas[i]) || percpu_u64_get(&c->usage[1]->replicas[i]) || percpu_u64_get(&c->usage[2]->replicas[i]) || percpu_u64_get(&c->usage[3]->replicas[i])) memcpy(cpu_replicas_entry(&new, new.nr++), e, new.entry_size); } bch2_cpu_replicas_sort(&new); ret = bch2_cpu_replicas_to_sb_replicas(c, &new) ?: replicas_table_update(c, &new); kfree(new.entries); percpu_up_write(&c->mark_lock); if (!ret) bch2_write_super(c); mutex_unlock(&c->sb_lock); return ret; } int bch2_replicas_set_usage(struct bch_fs *c, struct bch_replicas_entry *r, u64 sectors) { int ret, idx = bch2_replicas_entry_idx(c, r); if (idx < 0) { struct bch_replicas_cpu n; n = cpu_replicas_add_entry(c, &c->replicas, r); if (!n.entries) return -BCH_ERR_ENOMEM_cpu_replicas; ret = replicas_table_update(c, &n); if (ret) return ret; kfree(n.entries); idx = bch2_replicas_entry_idx(c, r); BUG_ON(ret < 0); } c->usage_base->replicas[idx] = sectors; return 0; } /* Replicas tracking - superblock: */ static int __bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r, struct bch_replicas_cpu *cpu_r) { struct bch_replicas_entry *e, *dst; unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); if (!cpu_r->entries) return -BCH_ERR_ENOMEM_cpu_replicas; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, e) { dst = cpu_replicas_entry(cpu_r, idx++); memcpy(dst, e, replicas_entry_bytes(e)); bch2_replicas_entry_sort(dst); } return 0; } static int __bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r, struct bch_replicas_cpu *cpu_r) { struct bch_replicas_entry_v0 *e; unsigned nr = 0, entry_size = 0, idx = 0; for_each_replicas_entry(sb_r, e) { entry_size = max_t(unsigned, entry_size, replicas_entry_bytes(e)); nr++; } entry_size += sizeof(struct bch_replicas_entry) - sizeof(struct bch_replicas_entry_v0); cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); if (!cpu_r->entries) return -BCH_ERR_ENOMEM_cpu_replicas; cpu_r->nr = nr; cpu_r->entry_size = entry_size; for_each_replicas_entry(sb_r, e) { struct bch_replicas_entry *dst = cpu_replicas_entry(cpu_r, idx++); dst->data_type = e->data_type; dst->nr_devs = e->nr_devs; dst->nr_required = 1; memcpy(dst->devs, e->devs, e->nr_devs); bch2_replicas_entry_sort(dst); } return 0; } int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) { struct bch_sb_field_replicas *sb_v1; struct bch_sb_field_replicas_v0 *sb_v0; struct bch_replicas_cpu new_r = { 0, 0, NULL }; int ret = 0; if ((sb_v1 = bch2_sb_field_get(c->disk_sb.sb, replicas))) ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r); else if ((sb_v0 = bch2_sb_field_get(c->disk_sb.sb, replicas_v0))) ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r); if (ret) return ret; bch2_cpu_replicas_sort(&new_r); percpu_down_write(&c->mark_lock); ret = replicas_table_update(c, &new_r); percpu_up_write(&c->mark_lock); kfree(new_r.entries); return 0; } static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas_v0 *sb_r; struct bch_replicas_entry_v0 *dst; struct bch_replicas_entry *src; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) bytes += replicas_entry_bytes(src) - 1; sb_r = bch2_sb_field_resize(&c->disk_sb, replicas_v0, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return -BCH_ERR_ENOSPC_sb_replicas; bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas_v0); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { dst->data_type = src->data_type; dst->nr_devs = src->nr_devs; memcpy(dst->devs, src->devs, src->nr_devs); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, struct bch_replicas_cpu *r) { struct bch_sb_field_replicas *sb_r; struct bch_replicas_entry *dst, *src; bool need_v1 = false; size_t bytes; bytes = sizeof(struct bch_sb_field_replicas); for_each_cpu_replicas_entry(r, src) { bytes += replicas_entry_bytes(src); if (src->nr_required != 1) need_v1 = true; } if (!need_v1) return bch2_cpu_replicas_to_sb_replicas_v0(c, r); sb_r = bch2_sb_field_resize(&c->disk_sb, replicas, DIV_ROUND_UP(bytes, sizeof(u64))); if (!sb_r) return -BCH_ERR_ENOSPC_sb_replicas; bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas); memset(&sb_r->entries, 0, vstruct_end(&sb_r->field) - (void *) &sb_r->entries); dst = sb_r->entries; for_each_cpu_replicas_entry(r, src) { memcpy(dst, src, replicas_entry_bytes(src)); dst = replicas_entry_next(dst); BUG_ON((void *) dst > vstruct_end(&sb_r->field)); } return 0; } static int bch2_cpu_replicas_validate(struct bch_replicas_cpu *cpu_r, struct bch_sb *sb, struct printbuf *err) { unsigned i; sort_cmp_size(cpu_r->entries, cpu_r->nr, cpu_r->entry_size, bch2_memcmp, NULL); for (i = 0; i < cpu_r->nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(cpu_r, i); int ret = bch2_replicas_entry_validate(e, sb, err); if (ret) return ret; if (i + 1 < cpu_r->nr) { struct bch_replicas_entry *n = cpu_replicas_entry(cpu_r, i + 1); BUG_ON(memcmp(e, n, cpu_r->entry_size) > 0); if (!memcmp(e, n, cpu_r->entry_size)) { prt_printf(err, "duplicate replicas entry "); bch2_replicas_entry_to_text(err, e); return -BCH_ERR_invalid_sb_replicas; } } } return 0; } static int bch2_sb_replicas_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); struct bch_replicas_cpu cpu_r; int ret; ret = __bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r); if (ret) return ret; ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); kfree(cpu_r.entries); return ret; } static void bch2_sb_replicas_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas *r = field_to_type(f, replicas); struct bch_replicas_entry *e; bool first = true; for_each_replicas_entry(r, e) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_to_text(out, e); } prt_newline(out); } const struct bch_sb_field_ops bch_sb_field_ops_replicas = { .validate = bch2_sb_replicas_validate, .to_text = bch2_sb_replicas_to_text, }; static int bch2_sb_replicas_v0_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); struct bch_replicas_cpu cpu_r; int ret; ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r); if (ret) return ret; ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); kfree(cpu_r.entries); return ret; } static void bch2_sb_replicas_v0_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); struct bch_replicas_entry_v0 *e; bool first = true; for_each_replicas_entry(sb_r, e) { if (!first) prt_printf(out, " "); first = false; bch2_replicas_entry_v0_to_text(out, e); } prt_newline(out); } const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { .validate = bch2_sb_replicas_v0_validate, .to_text = bch2_sb_replicas_v0_to_text, }; /* Query replicas: */ bool bch2_have_enough_devs(struct bch_fs *c, struct bch_devs_mask devs, unsigned flags, bool print) { struct bch_replicas_entry *e; bool ret = true; percpu_down_read(&c->mark_lock); for_each_cpu_replicas_entry(&c->replicas, e) { unsigned i, nr_online = 0, nr_failed = 0, dflags = 0; bool metadata = e->data_type < BCH_DATA_user; if (e->data_type == BCH_DATA_cached) continue; for (i = 0; i < e->nr_devs; i++) { struct bch_dev *ca = bch_dev_bkey_exists(c, e->devs[i]); nr_online += test_bit(e->devs[i], devs.d); nr_failed += ca->mi.state == BCH_MEMBER_STATE_failed; } if (nr_failed == e->nr_devs) continue; if (nr_online < e->nr_required) dflags |= metadata ? BCH_FORCE_IF_METADATA_LOST : BCH_FORCE_IF_DATA_LOST; if (nr_online < e->nr_devs) dflags |= metadata ? BCH_FORCE_IF_METADATA_DEGRADED : BCH_FORCE_IF_DATA_DEGRADED; if (dflags & ~flags) { if (print) { struct printbuf buf = PRINTBUF; bch2_replicas_entry_to_text(&buf, e); bch_err(c, "insufficient devices online (%u) for replicas entry %s", nr_online, buf.buf); printbuf_exit(&buf); } ret = false; break; } } percpu_up_read(&c->mark_lock); return ret; } unsigned bch2_sb_dev_has_data(struct bch_sb *sb, unsigned dev) { struct bch_sb_field_replicas *replicas; struct bch_sb_field_replicas_v0 *replicas_v0; unsigned i, data_has = 0; replicas = bch2_sb_field_get(sb, replicas); replicas_v0 = bch2_sb_field_get(sb, replicas_v0); if (replicas) { struct bch_replicas_entry *r; for_each_replicas_entry(replicas, r) for (i = 0; i < r->nr_devs; i++) if (r->devs[i] == dev) data_has |= 1 << r->data_type; } else if (replicas_v0) { struct bch_replicas_entry_v0 *r; for_each_replicas_entry_v0(replicas_v0, r) for (i = 0; i < r->nr_devs; i++) if (r->devs[i] == dev) data_has |= 1 << r->data_type; } return data_has; } unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) { unsigned ret; mutex_lock(&c->sb_lock); ret = bch2_sb_dev_has_data(c->disk_sb.sb, ca->dev_idx); mutex_unlock(&c->sb_lock); return ret; } void bch2_fs_replicas_exit(struct bch_fs *c) { unsigned i; kfree(c->usage_scratch); for (i = 0; i < ARRAY_SIZE(c->usage); i++) free_percpu(c->usage[i]); kfree(c->usage_base); kfree(c->replicas.entries); kfree(c->replicas_gc.entries); mempool_exit(&c->replicas_delta_pool); } int bch2_fs_replicas_init(struct bch_fs *c) { bch2_journal_entry_res_resize(&c->journal, &c->replicas_journal_res, reserve_journal_replicas(c, &c->replicas)); return mempool_init_kmalloc_pool(&c->replicas_delta_pool, 1, REPLICAS_DELTA_LIST_MAX) ?: replicas_table_update(c, &c->replicas); }