// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "bkey_methods.h" #include "bkey_buf.h" #include "btree_journal_iter.h" #include "btree_key_cache.h" #include "btree_locking.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "recovery.h" #include "reflink.h" #include "replicas.h" #include "super-io.h" #include "trace.h" #include #include #include #include #include #include #include #define DROP_THIS_NODE 10 #define DROP_PREV_NODE 11 static bool should_restart_for_topology_repair(struct bch_fs *c) { return c->opts.fix_errors != FSCK_FIX_no && !(c->recovery_passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology)); } static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { preempt_disable(); write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); preempt_enable(); } static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); __gc_pos_set(c, new_pos); } /* * Missing: if an interior btree node is empty, we need to do something - * perhaps just kill it */ static int bch2_gc_check_topology(struct bch_fs *c, struct btree *b, struct bkey_buf *prev, struct bkey_buf cur, bool is_last) { struct bpos node_start = b->data->min_key; struct bpos node_end = b->data->max_key; struct bpos expected_start = bkey_deleted(&prev->k->k) ? node_start : bpos_successor(prev->k->k.p); struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; int ret = 0; if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) { struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k); if (!bpos_eq(expected_start, bp->v.min_key)) { bch2_topology_error(c); if (bkey_deleted(&prev->k->k)) { prt_printf(&buf1, "start of node: "); bch2_bpos_to_text(&buf1, node_start); } else { bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(prev->k)); } bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(cur.k)); if (__fsck_err(c, FSCK_CAN_FIX| FSCK_CAN_IGNORE| FSCK_NO_RATELIMIT, btree_node_topology_bad_min_key, "btree node with incorrect min_key at btree %s level %u:\n" " prev %s\n" " cur %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf) && should_restart_for_topology_repair(c)) { bch_info(c, "Halting mark and sweep to start topology repair pass"); ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); goto err; } else { set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); } } } if (is_last && !bpos_eq(cur.k->k.p, node_end)) { bch2_topology_error(c); printbuf_reset(&buf1); printbuf_reset(&buf2); bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(cur.k)); bch2_bpos_to_text(&buf2, node_end); if (__fsck_err(c, FSCK_CAN_FIX|FSCK_CAN_IGNORE|FSCK_NO_RATELIMIT, btree_node_topology_bad_max_key, "btree node with incorrect max_key at btree %s level %u:\n" " %s\n" " expected %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf) && should_restart_for_topology_repair(c)) { bch_info(c, "Halting mark and sweep to start topology repair pass"); ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); goto err; } else { set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); } } bch2_bkey_buf_copy(prev, c, cur.k); err: fsck_err: printbuf_exit(&buf2); printbuf_exit(&buf1); return ret; } static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst) { switch (b->key.k.type) { case KEY_TYPE_btree_ptr: { struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key); dst->k.p = src->k.p; dst->v.mem_ptr = 0; dst->v.seq = b->data->keys.seq; dst->v.sectors_written = 0; dst->v.flags = 0; dst->v.min_key = b->data->min_key; set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k)); memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k)); break; } case KEY_TYPE_btree_ptr_v2: bkey_copy(&dst->k_i, &b->key); break; default: BUG(); } } static void bch2_btree_node_update_key_early(struct btree_trans *trans, enum btree_id btree, unsigned level, struct bkey_s_c old, struct bkey_i *new) { struct bch_fs *c = trans->c; struct btree *b; struct bkey_buf tmp; int ret; bch2_bkey_buf_init(&tmp); bch2_bkey_buf_reassemble(&tmp, c, old); b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true); if (!IS_ERR_OR_NULL(b)) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, new); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); six_unlock_read(&b->c.lock); } bch2_bkey_buf_exit(&tmp, c); } static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min) { struct bkey_i_btree_ptr_v2 *new; int ret; new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return -BCH_ERR_ENOMEM_gc_repair_key; btree_ptr_to_v2(b, new); b->data->min_key = new_min; new->v.min_key = new_min; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); bkey_copy(&b->key, &new->k_i); return 0; } static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max) { struct bkey_i_btree_ptr_v2 *new; int ret; ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p); if (ret) return ret; new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); if (!new) return -BCH_ERR_ENOMEM_gc_repair_key; btree_ptr_to_v2(b, new); b->data->max_key = new_max; new->k.p = new_max; SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); if (ret) { kfree(new); return ret; } bch2_btree_node_drop_keys_outside_node(b); mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, &new->k_i); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); return 0; } static int btree_repair_node_boundaries(struct bch_fs *c, struct btree *b, struct btree *prev, struct btree *cur) { struct bpos expected_start = !prev ? b->data->min_key : bpos_successor(prev->key.k.p); struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; int ret = 0; if (!prev) { prt_printf(&buf1, "start of node: "); bch2_bpos_to_text(&buf1, b->data->min_key); } else { bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&prev->key)); } bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(&cur->key)); if (prev && bpos_gt(expected_start, cur->data->min_key) && BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) { /* cur overwrites prev: */ if (mustfix_fsck_err_on(bpos_ge(prev->data->min_key, cur->data->min_key), c, btree_node_topology_overwritten_by_next_node, "btree node overwritten by next node at btree %s level %u:\n" " node %s\n" " next %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf)) { ret = DROP_PREV_NODE; goto out; } if (mustfix_fsck_err_on(!bpos_eq(prev->key.k.p, bpos_predecessor(cur->data->min_key)), c, btree_node_topology_bad_max_key, "btree node with incorrect max_key at btree %s level %u:\n" " node %s\n" " next %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf)) ret = set_node_max(c, prev, bpos_predecessor(cur->data->min_key)); } else { /* prev overwrites cur: */ if (mustfix_fsck_err_on(bpos_ge(expected_start, cur->data->max_key), c, btree_node_topology_overwritten_by_prev_node, "btree node overwritten by prev node at btree %s level %u:\n" " prev %s\n" " node %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf)) { ret = DROP_THIS_NODE; goto out; } if (mustfix_fsck_err_on(!bpos_eq(expected_start, cur->data->min_key), c, btree_node_topology_bad_min_key, "btree node with incorrect min_key at btree %s level %u:\n" " prev %s\n" " node %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf)) ret = set_node_min(c, cur, expected_start); } out: fsck_err: printbuf_exit(&buf2); printbuf_exit(&buf1); return ret; } static int btree_repair_node_end(struct bch_fs *c, struct btree *b, struct btree *child) { struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; int ret = 0; bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&child->key)); bch2_bpos_to_text(&buf2, b->key.k.p); if (mustfix_fsck_err_on(!bpos_eq(child->key.k.p, b->key.k.p), c, btree_node_topology_bad_max_key, "btree node with incorrect max_key at btree %s level %u:\n" " %s\n" " expected %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf1.buf, buf2.buf)) { ret = set_node_max(c, child, b->key.k.p); if (ret) goto err; } err: fsck_err: printbuf_exit(&buf2); printbuf_exit(&buf1); return ret; } static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf prev_k, cur_k; struct btree *prev = NULL, *cur = NULL; bool have_child, dropped_children = false; struct printbuf buf = PRINTBUF; int ret = 0; if (!b->c.level) return 0; again: prev = NULL; have_child = dropped_children = false; bch2_bkey_buf_init(&prev_k); bch2_bkey_buf_init(&cur_k); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { BUG_ON(bpos_lt(k.k->p, b->data->min_key)); BUG_ON(bpos_gt(k.k->p, b->data->max_key)); bch2_btree_and_journal_iter_advance(&iter); bch2_bkey_buf_reassemble(&cur_k, c, k); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k)); if (mustfix_fsck_err_on(ret == -EIO, c, btree_node_unreadable, "Topology repair: unreadable btree node at btree %s level %u:\n" " %s", bch2_btree_id_str(b->c.btree_id), b->c.level - 1, buf.buf)) { bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } if (ret) { bch_err_msg(c, ret, "getting btree node"); break; } ret = btree_repair_node_boundaries(c, b, prev, cur); if (ret == DROP_THIS_NODE) { six_unlock_read(&cur->c.lock); bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); cur = NULL; if (ret) break; continue; } if (prev) six_unlock_read(&prev->c.lock); prev = NULL; if (ret == DROP_PREV_NODE) { bch2_btree_node_evict(trans, prev_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, prev_k.k->k.p); if (ret) break; bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&prev_k, c); bch2_bkey_buf_exit(&cur_k, c); goto again; } else if (ret) break; prev = cur; cur = NULL; bch2_bkey_buf_copy(&prev_k, c, cur_k.k); } if (!ret && !IS_ERR_OR_NULL(prev)) { BUG_ON(cur); ret = btree_repair_node_end(c, b, prev); } if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); prev = NULL; if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); cur = NULL; if (ret) goto err; bch2_btree_and_journal_iter_exit(&iter); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { bch2_bkey_buf_reassemble(&cur_k, c, k); bch2_btree_and_journal_iter_advance(&iter); cur = bch2_btree_node_get_noiter(trans, cur_k.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(cur); if (ret) { bch_err_msg(c, ret, "getting btree node"); goto err; } ret = bch2_btree_repair_topology_recurse(trans, cur); six_unlock_read(&cur->c.lock); cur = NULL; if (ret == DROP_THIS_NODE) { bch2_btree_node_evict(trans, cur_k.k); ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level, cur_k.k->k.p); dropped_children = true; } if (ret) goto err; have_child = true; } printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); if (mustfix_fsck_err_on(!have_child, c, btree_node_topology_interior_node_empty, "empty interior btree node at btree %s level %u\n" " %s", bch2_btree_id_str(b->c.btree_id), b->c.level, buf.buf)) ret = DROP_THIS_NODE; err: fsck_err: if (!IS_ERR_OR_NULL(prev)) six_unlock_read(&prev->c.lock); if (!IS_ERR_OR_NULL(cur)) six_unlock_read(&cur->c.lock); bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&prev_k, c); bch2_bkey_buf_exit(&cur_k, c); if (!ret && dropped_children) goto again; printbuf_exit(&buf); return ret; } int bch2_check_topology(struct bch_fs *c) { struct btree_trans *trans = bch2_trans_get(c); struct btree *b; unsigned i; int ret = 0; for (i = 0; i < btree_id_nr_alive(c) && !ret; i++) { struct btree_root *r = bch2_btree_id_root(c, i); if (!r->alive) continue; b = r->b; if (btree_node_fake(b)) continue; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ret = bch2_btree_repair_topology_recurse(trans, b); six_unlock_read(&b->c.lock); if (ret == DROP_THIS_NODE) { bch_err(c, "empty btree root - repair unimplemented"); ret = -BCH_ERR_fsck_repair_unimplemented; } } bch2_trans_put(trans); return ret; } static int bch2_check_fix_ptrs(struct btree_trans *trans, enum btree_id btree_id, unsigned level, bool is_root, struct bkey_s_c *k) { struct bch_fs *c = trans->c; struct bkey_ptrs_c ptrs_c = bch2_bkey_ptrs_c(*k); const union bch_extent_entry *entry_c; struct extent_ptr_decoded p = { 0 }; bool do_update = false; struct printbuf buf = PRINTBUF; int ret = 0; /* * XXX * use check_bucket_ref here */ bkey_for_each_ptr_decode(k->k, ptrs_c, p, entry_c) { struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct bucket *g = PTR_GC_BUCKET(ca, &p.ptr); enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, &entry_c->ptr); if (!g->gen_valid && (c->opts.reconstruct_alloc || fsck_err(c, ptr_to_missing_alloc_key, "bucket %u:%zu data type %s ptr gen %u missing in alloc btree\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) { if (!p.ptr.cached) { g->gen_valid = true; g->gen = p.ptr.gen; } else { do_update = true; } } if (gen_cmp(p.ptr.gen, g->gen) > 0 && (c->opts.reconstruct_alloc || fsck_err(c, ptr_gen_newer_than_bucket_gen, "bucket %u:%zu data type %s ptr gen in the future: %u > %u\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, g->gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) { if (!p.ptr.cached) { g->gen_valid = true; g->gen = p.ptr.gen; g->data_type = 0; g->dirty_sectors = 0; g->cached_sectors = 0; set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); } else { do_update = true; } } if (gen_cmp(g->gen, p.ptr.gen) > BUCKET_GC_GEN_MAX && (c->opts.reconstruct_alloc || fsck_err(c, ptr_gen_newer_than_bucket_gen, "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), g->gen, bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) do_update = true; if (!p.ptr.cached && gen_cmp(p.ptr.gen, g->gen) < 0 && (c->opts.reconstruct_alloc || fsck_err(c, stale_dirty_ptr, "bucket %u:%zu data type %s stale dirty ptr: %u < %u\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[ptr_data_type(k->k, &p.ptr)], p.ptr.gen, g->gen, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) do_update = true; if (data_type != BCH_DATA_btree && p.ptr.gen != g->gen) continue; if (fsck_err_on(bucket_data_type(g->data_type) && bucket_data_type(g->data_type) != data_type, c, ptr_bucket_data_type_mismatch, "bucket %u:%zu different types of data in same bucket: %s, %s\n" "while marking %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), bch2_data_types[g->data_type], bch2_data_types[data_type], (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) { if (data_type == BCH_DATA_btree) { g->data_type = data_type; set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); } else { do_update = true; } } if (p.has_ec) { struct gc_stripe *m = genradix_ptr(&c->gc_stripes, p.ec.idx); if (fsck_err_on(!m || !m->alive, c, ptr_to_missing_stripe, "pointer to nonexistent stripe %llu\n" "while marking %s", (u64) p.ec.idx, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) do_update = true; if (fsck_err_on(m && m->alive && !bch2_ptr_matches_stripe_m(m, p), c, ptr_to_incorrect_stripe, "pointer does not match stripe %llu\n" "while marking %s", (u64) p.ec.idx, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) do_update = true; } } if (do_update) { struct bkey_ptrs ptrs; union bch_extent_entry *entry; struct bch_extent_ptr *ptr; struct bkey_i *new; if (is_root) { bch_err(c, "cannot update btree roots yet"); ret = -EINVAL; goto err; } new = kmalloc(bkey_bytes(k->k), GFP_KERNEL); if (!new) { bch_err_msg(c, ret, "allocating new key"); ret = -BCH_ERR_ENOMEM_gc_repair_key; goto err; } bkey_reassemble(new, *k); if (level) { /* * We don't want to drop btree node pointers - if the * btree node isn't there anymore, the read path will * sort it out: */ ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_GC_BUCKET(ca, ptr); ptr->gen = g->gen; } } else { bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_GC_BUCKET(ca, ptr); enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, ptr); (ptr->cached && (!g->gen_valid || gen_cmp(ptr->gen, g->gen) > 0)) || (!ptr->cached && gen_cmp(ptr->gen, g->gen) < 0) || gen_cmp(g->gen, ptr->gen) > BUCKET_GC_GEN_MAX || (g->data_type && g->data_type != data_type); })); again: ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); bkey_extent_entry_for_each(ptrs, entry) { if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) { struct gc_stripe *m = genradix_ptr(&c->gc_stripes, entry->stripe_ptr.idx); union bch_extent_entry *next_ptr; bkey_extent_entry_for_each_from(ptrs, next_ptr, entry) if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr) goto found; next_ptr = NULL; found: if (!next_ptr) { bch_err(c, "aieee, found stripe ptr with no data ptr"); continue; } if (!m || !m->alive || !__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block], &next_ptr->ptr, m->sectors)) { bch2_bkey_extent_entry_drop(new, entry); goto again; } } } } ret = bch2_journal_key_insert_take(c, btree_id, level, new); if (ret) { kfree(new); goto err; } if (level) bch2_btree_node_update_key_early(trans, btree_id, level - 1, *k, new); if (0) { printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, *k); bch_info(c, "updated %s", buf.buf); printbuf_reset(&buf); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(new)); bch_info(c, "new key %s", buf.buf); } *k = bkey_i_to_s_c(new); } err: fsck_err: printbuf_exit(&buf); return ret; } /* marking of btree keys/nodes: */ static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id, unsigned level, bool is_root, struct bkey_s_c *k, bool initial) { struct bch_fs *c = trans->c; struct bkey deleted = KEY(0, 0, 0); struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; unsigned flags = BTREE_TRIGGER_GC| (initial ? BTREE_TRIGGER_NOATOMIC : 0); int ret = 0; deleted.p = k->k->p; if (initial) { BUG_ON(bch2_journal_seq_verify && k->k->version.lo > atomic64_read(&c->journal.seq)); ret = bch2_check_fix_ptrs(trans, btree_id, level, is_root, k); if (ret) goto err; if (fsck_err_on(k->k->version.lo > atomic64_read(&c->key_version), c, bkey_version_in_future, "key version number higher than recorded: %llu > %llu", k->k->version.lo, atomic64_read(&c->key_version))) atomic64_set(&c->key_version, k->k->version.lo); } ret = commit_do(trans, NULL, NULL, 0, bch2_mark_key(trans, btree_id, level, old, *k, flags)); fsck_err: err: if (ret) bch_err_fn(c, ret); return ret; } static int btree_gc_mark_node(struct btree_trans *trans, struct btree *b, bool initial) { struct bch_fs *c = trans->c; struct btree_node_iter iter; struct bkey unpacked; struct bkey_s_c k; struct bkey_buf prev, cur; int ret = 0; if (!btree_node_type_needs_gc(btree_node_type(b))) return 0; bch2_btree_node_iter_init_from_start(&iter, b); bch2_bkey_buf_init(&prev); bch2_bkey_buf_init(&cur); bkey_init(&prev.k->k); while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) { ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false, &k, initial); if (ret) break; bch2_btree_node_iter_advance(&iter, b); if (b->c.level) { bch2_bkey_buf_reassemble(&cur, c, k); ret = bch2_gc_check_topology(c, b, &prev, cur, bch2_btree_node_iter_end(&iter)); if (ret) break; } } bch2_bkey_buf_exit(&cur, c); bch2_bkey_buf_exit(&prev, c); return ret; } static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree_id, bool initial, bool metadata_only) { struct bch_fs *c = trans->c; struct btree_iter iter; struct btree *b; unsigned depth = metadata_only ? 1 : 0; int ret = 0; gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); __for_each_btree_node(trans, iter, btree_id, POS_MIN, 0, depth, BTREE_ITER_PREFETCH, b, ret) { bch2_verify_btree_nr_keys(b); gc_pos_set(c, gc_pos_btree_node(b)); ret = btree_gc_mark_node(trans, b, initial); if (ret) break; } bch2_trans_iter_exit(trans, &iter); if (ret) return ret; mutex_lock(&c->btree_root_lock); b = bch2_btree_id_root(c, btree_id)->b; if (!btree_node_fake(b)) { struct bkey_s_c k = bkey_i_to_s_c(&b->key); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, true, &k, initial); } gc_pos_set(c, gc_pos_btree_root(b->c.btree_id)); mutex_unlock(&c->btree_root_lock); return ret; } static int bch2_gc_btree_init_recurse(struct btree_trans *trans, struct btree *b, unsigned target_depth) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf cur, prev; struct printbuf buf = PRINTBUF; int ret = 0; bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); bch2_bkey_buf_init(&prev); bch2_bkey_buf_init(&cur); bkey_init(&prev.k->k); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { BUG_ON(bpos_lt(k.k->p, b->data->min_key)); BUG_ON(bpos_gt(k.k->p, b->data->max_key)); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false, &k, true); if (ret) goto fsck_err; if (b->c.level) { bch2_bkey_buf_reassemble(&cur, c, k); k = bkey_i_to_s_c(cur.k); bch2_btree_and_journal_iter_advance(&iter); ret = bch2_gc_check_topology(c, b, &prev, cur, !bch2_btree_and_journal_iter_peek(&iter).k); if (ret) goto fsck_err; } else { bch2_btree_and_journal_iter_advance(&iter); } } if (b->c.level > target_depth) { bch2_btree_and_journal_iter_exit(&iter); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { struct btree *child; bch2_bkey_buf_reassemble(&cur, c, k); bch2_btree_and_journal_iter_advance(&iter); child = bch2_btree_node_get_noiter(trans, cur.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(child); if (ret == -EIO) { bch2_topology_error(c); if (__fsck_err(c, FSCK_CAN_FIX| FSCK_CAN_IGNORE| FSCK_NO_RATELIMIT, btree_node_read_error, "Unreadable btree node at btree %s level %u:\n" " %s", bch2_btree_id_str(b->c.btree_id), b->c.level - 1, (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur.k)), buf.buf)) && should_restart_for_topology_repair(c)) { bch_info(c, "Halting mark and sweep to start topology repair pass"); ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); goto fsck_err; } else { /* Continue marking when opted to not * fix the error: */ ret = 0; set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); continue; } } else if (ret) { bch_err_msg(c, ret, "getting btree node"); break; } ret = bch2_gc_btree_init_recurse(trans, child, target_depth); six_unlock_read(&child->c.lock); if (ret) break; } } fsck_err: bch2_bkey_buf_exit(&cur, c); bch2_bkey_buf_exit(&prev, c); bch2_btree_and_journal_iter_exit(&iter); printbuf_exit(&buf); return ret; } static int bch2_gc_btree_init(struct btree_trans *trans, enum btree_id btree_id, bool metadata_only) { struct bch_fs *c = trans->c; struct btree *b; unsigned target_depth = metadata_only ? 1 : 0; struct printbuf buf = PRINTBUF; int ret = 0; b = bch2_btree_id_root(c, btree_id)->b; if (btree_node_fake(b)) return 0; six_lock_read(&b->c.lock, NULL, NULL); printbuf_reset(&buf); bch2_bpos_to_text(&buf, b->data->min_key); if (mustfix_fsck_err_on(!bpos_eq(b->data->min_key, POS_MIN), c, btree_root_bad_min_key, "btree root with incorrect min_key: %s", buf.buf)) { bch_err(c, "repair unimplemented"); ret = -BCH_ERR_fsck_repair_unimplemented; goto fsck_err; } printbuf_reset(&buf); bch2_bpos_to_text(&buf, b->data->max_key); if (mustfix_fsck_err_on(!bpos_eq(b->data->max_key, SPOS_MAX), c, btree_root_bad_max_key, "btree root with incorrect max_key: %s", buf.buf)) { bch_err(c, "repair unimplemented"); ret = -BCH_ERR_fsck_repair_unimplemented; goto fsck_err; } if (b->c.level >= target_depth) ret = bch2_gc_btree_init_recurse(trans, b, target_depth); if (!ret) { struct bkey_s_c k = bkey_i_to_s_c(&b->key); ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, true, &k, true); } fsck_err: six_unlock_read(&b->c.lock); if (ret < 0) bch_err_fn(c, ret); printbuf_exit(&buf); return ret; } static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) { return (int) btree_id_to_gc_phase(l) - (int) btree_id_to_gc_phase(r); } static int bch2_gc_btrees(struct bch_fs *c, bool initial, bool metadata_only) { struct btree_trans *trans = bch2_trans_get(c); enum btree_id ids[BTREE_ID_NR]; unsigned i; int ret = 0; for (i = 0; i < BTREE_ID_NR; i++) ids[i] = i; bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); for (i = 0; i < BTREE_ID_NR && !ret; i++) ret = initial ? bch2_gc_btree_init(trans, ids[i], metadata_only) : bch2_gc_btree(trans, ids[i], initial, metadata_only); for (i = BTREE_ID_NR; i < btree_id_nr_alive(c) && !ret; i++) { if (!bch2_btree_id_root(c, i)->alive) continue; ret = initial ? bch2_gc_btree_init(trans, i, metadata_only) : bch2_gc_btree(trans, i, initial, metadata_only); } if (ret < 0) bch_err_fn(c, ret); bch2_trans_put(trans); return ret; } static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, u64 start, u64 end, enum bch_data_type type, unsigned flags) { u64 b = sector_to_bucket(ca, start); do { unsigned sectors = min_t(u64, bucket_to_sector(ca, b + 1), end) - start; bch2_mark_metadata_bucket(c, ca, b, type, sectors, gc_phase(GC_PHASE_SB), flags); b++; start += sectors; } while (start < end); } static void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, unsigned flags) { struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; unsigned i; u64 b; for (i = 0; i < layout->nr_superblocks; i++) { u64 offset = le64_to_cpu(layout->sb_offset[i]); if (offset == BCH_SB_SECTOR) mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, BCH_DATA_sb, flags); mark_metadata_sectors(c, ca, offset, offset + (1 << layout->sb_max_size_bits), BCH_DATA_sb, flags); } for (i = 0; i < ca->journal.nr; i++) { b = ca->journal.buckets[i]; bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal, ca->mi.bucket_size, gc_phase(GC_PHASE_SB), flags); } } static void bch2_mark_superblocks(struct bch_fs *c) { struct bch_dev *ca; unsigned i; mutex_lock(&c->sb_lock); gc_pos_set(c, gc_phase(GC_PHASE_SB)); for_each_online_member(ca, c, i) bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC); mutex_unlock(&c->sb_lock); } #if 0 /* Also see bch2_pending_btree_node_free_insert_done() */ static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) { struct btree_update *as; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); for_each_pending_btree_node_free(c, as, d) if (d->index_update_done) bch2_mark_key(c, bkey_i_to_s_c(&d->key), BTREE_TRIGGER_GC); mutex_unlock(&c->btree_interior_update_lock); } #endif static void bch2_gc_free(struct bch_fs *c) { struct bch_dev *ca; unsigned i; genradix_free(&c->reflink_gc_table); genradix_free(&c->gc_stripes); for_each_member_device(ca, c, i) { kvpfree(rcu_dereference_protected(ca->buckets_gc, 1), sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket)); ca->buckets_gc = NULL; free_percpu(ca->usage_gc); ca->usage_gc = NULL; } free_percpu(c->usage_gc); c->usage_gc = NULL; } static int bch2_gc_done(struct bch_fs *c, bool initial, bool metadata_only) { struct bch_dev *ca = NULL; struct printbuf buf = PRINTBUF; bool verify = !metadata_only && !c->opts.reconstruct_alloc && (!initial || (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info))); unsigned i, dev; int ret = 0; percpu_down_write(&c->mark_lock); #define copy_field(_err, _f, _msg, ...) \ if (dst->_f != src->_f && \ (!verify || \ fsck_err(c, _err, _msg ": got %llu, should be %llu" \ , ##__VA_ARGS__, dst->_f, src->_f))) \ dst->_f = src->_f #define copy_dev_field(_err, _f, _msg, ...) \ copy_field(_err, _f, "dev %u has wrong " _msg, dev, ##__VA_ARGS__) #define copy_fs_field(_err, _f, _msg, ...) \ copy_field(_err, _f, "fs has wrong " _msg, ##__VA_ARGS__) for (i = 0; i < ARRAY_SIZE(c->usage); i++) bch2_fs_usage_acc_to_base(c, i); for_each_member_device(ca, c, dev) { struct bch_dev_usage *dst = ca->usage_base; struct bch_dev_usage *src = (void *) bch2_acc_percpu_u64s((u64 __percpu *) ca->usage_gc, dev_usage_u64s()); for (i = 0; i < BCH_DATA_NR; i++) { copy_dev_field(dev_usage_buckets_wrong, d[i].buckets, "%s buckets", bch2_data_types[i]); copy_dev_field(dev_usage_sectors_wrong, d[i].sectors, "%s sectors", bch2_data_types[i]); copy_dev_field(dev_usage_fragmented_wrong, d[i].fragmented, "%s fragmented", bch2_data_types[i]); } copy_dev_field(dev_usage_buckets_ec_wrong, buckets_ec, "buckets_ec"); } { unsigned nr = fs_usage_u64s(c); struct bch_fs_usage *dst = c->usage_base; struct bch_fs_usage *src = (void *) bch2_acc_percpu_u64s((u64 __percpu *) c->usage_gc, nr); copy_fs_field(fs_usage_hidden_wrong, hidden, "hidden"); copy_fs_field(fs_usage_btree_wrong, btree, "btree"); if (!metadata_only) { copy_fs_field(fs_usage_data_wrong, data, "data"); copy_fs_field(fs_usage_cached_wrong, cached, "cached"); copy_fs_field(fs_usage_reserved_wrong, reserved, "reserved"); copy_fs_field(fs_usage_nr_inodes_wrong, nr_inodes,"nr_inodes"); for (i = 0; i < BCH_REPLICAS_MAX; i++) copy_fs_field(fs_usage_persistent_reserved_wrong, persistent_reserved[i], "persistent_reserved[%i]", i); } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); if (metadata_only && (e->data_type == BCH_DATA_user || e->data_type == BCH_DATA_cached)) continue; printbuf_reset(&buf); bch2_replicas_entry_to_text(&buf, e); copy_fs_field(fs_usage_replicas_wrong, replicas[i], "%s", buf.buf); } } #undef copy_fs_field #undef copy_dev_field #undef copy_stripe_field #undef copy_field fsck_err: if (ca) percpu_ref_put(&ca->ref); if (ret) bch_err_fn(c, ret); percpu_up_write(&c->mark_lock); printbuf_exit(&buf); return ret; } static int bch2_gc_start(struct bch_fs *c) { struct bch_dev *ca = NULL; unsigned i; BUG_ON(c->usage_gc); c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!c->usage_gc) { bch_err(c, "error allocating c->usage_gc"); return -BCH_ERR_ENOMEM_gc_start; } for_each_member_device(ca, c, i) { BUG_ON(ca->usage_gc); ca->usage_gc = alloc_percpu(struct bch_dev_usage); if (!ca->usage_gc) { bch_err(c, "error allocating ca->usage_gc"); percpu_ref_put(&ca->ref); return -BCH_ERR_ENOMEM_gc_start; } this_cpu_write(ca->usage_gc->d[BCH_DATA_free].buckets, ca->mi.nbuckets - ca->mi.first_bucket); } return 0; } static int bch2_gc_reset(struct bch_fs *c) { struct bch_dev *ca; unsigned i; for_each_member_device(ca, c, i) { free_percpu(ca->usage_gc); ca->usage_gc = NULL; } free_percpu(c->usage_gc); c->usage_gc = NULL; return bch2_gc_start(c); } /* returns true if not equal */ static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l, struct bch_alloc_v4 r) { return l.gen != r.gen || l.oldest_gen != r.oldest_gen || l.data_type != r.data_type || l.dirty_sectors != r.dirty_sectors || l.cached_sectors != r.cached_sectors || l.stripe_redundancy != r.stripe_redundancy || l.stripe != r.stripe; } static int bch2_alloc_write_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, bool metadata_only) { struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, iter->pos.inode); struct bucket gc, *b; struct bkey_i_alloc_v4 *a; struct bch_alloc_v4 old_convert, new; const struct bch_alloc_v4 *old; enum bch_data_type type; int ret; if (bkey_ge(iter->pos, POS(ca->dev_idx, ca->mi.nbuckets))) return 1; old = bch2_alloc_to_v4(k, &old_convert); new = *old; percpu_down_read(&c->mark_lock); b = gc_bucket(ca, iter->pos.offset); /* * b->data_type doesn't yet include need_discard & need_gc_gen states - * fix that here: */ type = __alloc_data_type(b->dirty_sectors, b->cached_sectors, b->stripe, *old, b->data_type); if (b->data_type != type) { struct bch_dev_usage *u; preempt_disable(); u = this_cpu_ptr(ca->usage_gc); u->d[b->data_type].buckets--; b->data_type = type; u->d[b->data_type].buckets++; preempt_enable(); } gc = *b; percpu_up_read(&c->mark_lock); if (metadata_only && gc.data_type != BCH_DATA_sb && gc.data_type != BCH_DATA_journal && gc.data_type != BCH_DATA_btree) return 0; if (gen_after(old->gen, gc.gen)) return 0; if (c->opts.reconstruct_alloc || fsck_err_on(new.data_type != gc.data_type, c, alloc_key_data_type_wrong, "bucket %llu:%llu gen %u has wrong data_type" ": got %s, should be %s", iter->pos.inode, iter->pos.offset, gc.gen, bch2_data_types[new.data_type], bch2_data_types[gc.data_type])) new.data_type = gc.data_type; #define copy_bucket_field(_errtype, _f) \ if (c->opts.reconstruct_alloc || \ fsck_err_on(new._f != gc._f, c, _errtype, \ "bucket %llu:%llu gen %u data type %s has wrong " #_f \ ": got %u, should be %u", \ iter->pos.inode, iter->pos.offset, \ gc.gen, \ bch2_data_types[gc.data_type], \ new._f, gc._f)) \ new._f = gc._f; \ copy_bucket_field(alloc_key_gen_wrong, gen); copy_bucket_field(alloc_key_dirty_sectors_wrong, dirty_sectors); copy_bucket_field(alloc_key_cached_sectors_wrong, cached_sectors); copy_bucket_field(alloc_key_stripe_wrong, stripe); copy_bucket_field(alloc_key_stripe_redundancy_wrong, stripe_redundancy); #undef copy_bucket_field if (!bch2_alloc_v4_cmp(*old, new)) return 0; a = bch2_alloc_to_v4_mut(trans, k); ret = PTR_ERR_OR_ZERO(a); if (ret) return ret; a->v = new; /* * The trigger normally makes sure this is set, but we're not running * triggers: */ if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ]) a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); ret = bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_NORUN); fsck_err: return ret; } static int bch2_gc_alloc_done(struct bch_fs *c, bool metadata_only) { struct btree_trans *trans = bch2_trans_get(c); struct btree_iter iter; struct bkey_s_c k; struct bch_dev *ca; unsigned i; int ret = 0; for_each_member_device(ca, c, i) { ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, ca->mi.first_bucket), BTREE_ITER_SLOTS|BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_LAZY_RW, bch2_alloc_write_key(trans, &iter, k, metadata_only)); if (ret < 0) { bch_err_fn(c, ret); percpu_ref_put(&ca->ref); break; } } bch2_trans_put(trans); return ret < 0 ? ret : 0; } static int bch2_gc_alloc_start(struct bch_fs *c, bool metadata_only) { struct bch_dev *ca; struct btree_trans *trans = bch2_trans_get(c); struct btree_iter iter; struct bkey_s_c k; struct bucket *g; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; unsigned i; int ret; for_each_member_device(ca, c, i) { struct bucket_array *buckets = kvpmalloc(sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO); if (!buckets) { percpu_ref_put(&ca->ref); bch_err(c, "error allocating ca->buckets[gc]"); ret = -BCH_ERR_ENOMEM_gc_alloc_start; goto err; } buckets->first_bucket = ca->mi.first_bucket; buckets->nbuckets = ca->mi.nbuckets; rcu_assign_pointer(ca->buckets_gc, buckets); } ret = for_each_btree_key2(trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, ({ ca = bch_dev_bkey_exists(c, k.k->p.inode); g = gc_bucket(ca, k.k->p.offset); a = bch2_alloc_to_v4(k, &a_convert); g->gen_valid = 1; g->gen = a->gen; if (metadata_only && (a->data_type == BCH_DATA_user || a->data_type == BCH_DATA_cached || a->data_type == BCH_DATA_parity)) { g->data_type = a->data_type; g->dirty_sectors = a->dirty_sectors; g->cached_sectors = a->cached_sectors; g->stripe = a->stripe; g->stripe_redundancy = a->stripe_redundancy; } 0; })); err: bch2_trans_put(trans); if (ret) bch_err_fn(c, ret); return ret; } static void bch2_gc_alloc_reset(struct bch_fs *c, bool metadata_only) { struct bch_dev *ca; unsigned i; for_each_member_device(ca, c, i) { struct bucket_array *buckets = gc_bucket_array(ca); struct bucket *g; for_each_bucket(g, buckets) { if (metadata_only && (g->data_type == BCH_DATA_user || g->data_type == BCH_DATA_cached || g->data_type == BCH_DATA_parity)) continue; g->data_type = 0; g->dirty_sectors = 0; g->cached_sectors = 0; } } } static int bch2_gc_write_reflink_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, size_t *idx) { struct bch_fs *c = trans->c; const __le64 *refcount = bkey_refcount_c(k); struct printbuf buf = PRINTBUF; struct reflink_gc *r; int ret = 0; if (!refcount) return 0; while ((r = genradix_ptr(&c->reflink_gc_table, *idx)) && r->offset < k.k->p.offset) ++*idx; if (!r || r->offset != k.k->p.offset || r->size != k.k->size) { bch_err(c, "unexpected inconsistency walking reflink table at gc finish"); return -EINVAL; } if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c, reflink_v_refcount_wrong, "reflink key has wrong refcount:\n" " %s\n" " should be %u", (bch2_bkey_val_to_text(&buf, c, k), buf.buf), r->refcount)) { struct bkey_i *new = bch2_bkey_make_mut(trans, iter, &k, 0); ret = PTR_ERR_OR_ZERO(new); if (ret) return ret; if (!r->refcount) new->k.type = KEY_TYPE_deleted; else *bkey_refcount(new) = cpu_to_le64(r->refcount); } fsck_err: printbuf_exit(&buf); return ret; } static int bch2_gc_reflink_done(struct bch_fs *c, bool metadata_only) { struct btree_trans *trans; struct btree_iter iter; struct bkey_s_c k; size_t idx = 0; int ret = 0; if (metadata_only) return 0; trans = bch2_trans_get(c); ret = for_each_btree_key_commit(trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL, bch2_gc_write_reflink_key(trans, &iter, k, &idx)); c->reflink_gc_nr = 0; bch2_trans_put(trans); return ret; } static int bch2_gc_reflink_start(struct bch_fs *c, bool metadata_only) { struct btree_trans *trans; struct btree_iter iter; struct bkey_s_c k; struct reflink_gc *r; int ret = 0; if (metadata_only) return 0; trans = bch2_trans_get(c); c->reflink_gc_nr = 0; for_each_btree_key(trans, iter, BTREE_ID_reflink, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { const __le64 *refcount = bkey_refcount_c(k); if (!refcount) continue; r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++, GFP_KERNEL); if (!r) { ret = -BCH_ERR_ENOMEM_gc_reflink_start; break; } r->offset = k.k->p.offset; r->size = k.k->size; r->refcount = 0; } bch2_trans_iter_exit(trans, &iter); bch2_trans_put(trans); return ret; } static void bch2_gc_reflink_reset(struct bch_fs *c, bool metadata_only) { struct genradix_iter iter; struct reflink_gc *r; genradix_for_each(&c->reflink_gc_table, iter, r) r->refcount = 0; } static int bch2_gc_write_stripes_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct printbuf buf = PRINTBUF; const struct bch_stripe *s; struct gc_stripe *m; bool bad = false; unsigned i; int ret = 0; if (k.k->type != KEY_TYPE_stripe) return 0; s = bkey_s_c_to_stripe(k).v; m = genradix_ptr(&c->gc_stripes, k.k->p.offset); for (i = 0; i < s->nr_blocks; i++) { u32 old = stripe_blockcount_get(s, i); u32 new = (m ? m->block_sectors[i] : 0); if (old != new) { prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n", i, old, new); bad = true; } } if (bad) bch2_bkey_val_to_text(&buf, c, k); if (fsck_err_on(bad, c, stripe_sector_count_wrong, "%s", buf.buf)) { struct bkey_i_stripe *new; new = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ret = PTR_ERR_OR_ZERO(new); if (ret) return ret; bkey_reassemble(&new->k_i, k); for (i = 0; i < new->v.nr_blocks; i++) stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0); ret = bch2_trans_update(trans, iter, &new->k_i, 0); } fsck_err: printbuf_exit(&buf); return ret; } static int bch2_gc_stripes_done(struct bch_fs *c, bool metadata_only) { struct btree_trans *trans; struct btree_iter iter; struct bkey_s_c k; int ret = 0; if (metadata_only) return 0; trans = bch2_trans_get(c); ret = for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL, bch2_gc_write_stripes_key(trans, &iter, k)); bch2_trans_put(trans); return ret; } static void bch2_gc_stripes_reset(struct bch_fs *c, bool metadata_only) { genradix_free(&c->gc_stripes); } /** * bch2_gc - walk _all_ references to buckets, and recompute them: * * @c: filesystem object * @initial: are we in recovery? * @metadata_only: are we just checking metadata references, or everything? * * Returns: 0 on success, or standard errcode on failure * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ int bch2_gc(struct bch_fs *c, bool initial, bool metadata_only) { unsigned iter = 0; int ret; lockdep_assert_held(&c->state_lock); down_write(&c->gc_lock); bch2_btree_interior_updates_flush(c); ret = bch2_gc_start(c) ?: bch2_gc_alloc_start(c, metadata_only) ?: bch2_gc_reflink_start(c, metadata_only); if (ret) goto out; again: gc_pos_set(c, gc_phase(GC_PHASE_START)); bch2_mark_superblocks(c); ret = bch2_gc_btrees(c, initial, metadata_only); if (ret) goto out; #if 0 bch2_mark_pending_btree_node_frees(c); #endif c->gc_count++; if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) || (!iter && bch2_test_restart_gc)) { if (iter++ > 2) { bch_info(c, "Unable to fix bucket gens, looping"); ret = -EINVAL; goto out; } /* * XXX: make sure gens we fixed got saved */ bch_info(c, "Second GC pass needed, restarting:"); clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); bch2_gc_stripes_reset(c, metadata_only); bch2_gc_alloc_reset(c, metadata_only); bch2_gc_reflink_reset(c, metadata_only); ret = bch2_gc_reset(c); if (ret) goto out; /* flush fsck errors, reset counters */ bch2_flush_fsck_errs(c); goto again; } out: if (!ret) { bch2_journal_block(&c->journal); ret = bch2_gc_stripes_done(c, metadata_only) ?: bch2_gc_reflink_done(c, metadata_only) ?: bch2_gc_alloc_done(c, metadata_only) ?: bch2_gc_done(c, initial, metadata_only); bch2_journal_unblock(&c->journal); } percpu_down_write(&c->mark_lock); /* Indicates that gc is no longer in progress: */ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); bch2_gc_free(c); percpu_up_write(&c->mark_lock); up_write(&c->gc_lock); /* * At startup, allocations can happen directly instead of via the * allocator thread - issue wakeup in case they blocked on gc_lock: */ closure_wake_up(&c->freelist_wait); if (ret) bch_err_fn(c, ret); return ret; } static int gc_btree_gens_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_fs *c = trans->c; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const struct bch_extent_ptr *ptr; struct bkey_i *u; int ret; percpu_down_read(&c->mark_lock); bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); if (ptr_stale(ca, ptr) > 16) { percpu_up_read(&c->mark_lock); goto update; } } bkey_for_each_ptr(ptrs, ptr) { struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); u8 *gen = &ca->oldest_gen[PTR_BUCKET_NR(ca, ptr)]; if (gen_after(*gen, ptr->gen)) *gen = ptr->gen; } percpu_up_read(&c->mark_lock); return 0; update: u = bch2_bkey_make_mut(trans, iter, &k, 0); ret = PTR_ERR_OR_ZERO(u); if (ret) return ret; bch2_extent_normalize(c, bkey_i_to_s(u)); return 0; } static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k) { struct bch_dev *ca = bch_dev_bkey_exists(trans->c, iter->pos.inode); struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); struct bkey_i_alloc_v4 *a_mut; int ret; if (a->oldest_gen == ca->oldest_gen[iter->pos.offset]) return 0; a_mut = bch2_alloc_to_v4_mut(trans, k); ret = PTR_ERR_OR_ZERO(a_mut); if (ret) return ret; a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset]; a_mut->v.data_type = alloc_data_type(a_mut->v, a_mut->v.data_type); return bch2_trans_update(trans, iter, &a_mut->k_i, 0); } int bch2_gc_gens(struct bch_fs *c) { struct btree_trans *trans; struct btree_iter iter; struct bkey_s_c k; struct bch_dev *ca; u64 b, start_time = local_clock(); unsigned i; int ret; /* * Ideally we would be using state_lock and not gc_lock here, but that * introduces a deadlock in the RO path - we currently take the state * lock at the start of going RO, thus the gc thread may get stuck: */ if (!mutex_trylock(&c->gc_gens_lock)) return 0; trace_and_count(c, gc_gens_start, c); down_read(&c->gc_lock); trans = bch2_trans_get(c); for_each_member_device(ca, c, i) { struct bucket_gens *gens = bucket_gens(ca); BUG_ON(ca->oldest_gen); ca->oldest_gen = kvmalloc(gens->nbuckets, GFP_KERNEL); if (!ca->oldest_gen) { percpu_ref_put(&ca->ref); ret = -BCH_ERR_ENOMEM_gc_gens; goto err; } for (b = gens->first_bucket; b < gens->nbuckets; b++) ca->oldest_gen[b] = gens->b[b]; } for (i = 0; i < BTREE_ID_NR; i++) if (btree_type_has_ptrs(i)) { c->gc_gens_btree = i; c->gc_gens_pos = POS_MIN; ret = for_each_btree_key_commit(trans, iter, i, POS_MIN, BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, NULL, NULL, BTREE_INSERT_NOFAIL, gc_btree_gens_key(trans, &iter, k)); if (ret && !bch2_err_matches(ret, EROFS)) bch_err_fn(c, ret); if (ret) goto err; } ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL, bch2_alloc_write_oldest_gen(trans, &iter, k)); if (ret && !bch2_err_matches(ret, EROFS)) bch_err_fn(c, ret); if (ret) goto err; c->gc_gens_btree = 0; c->gc_gens_pos = POS_MIN; c->gc_count++; bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); trace_and_count(c, gc_gens_end, c); err: for_each_member_device(ca, c, i) { kvfree(ca->oldest_gen); ca->oldest_gen = NULL; } bch2_trans_put(trans); up_read(&c->gc_lock); mutex_unlock(&c->gc_gens_lock); return ret; } static int bch2_gc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; unsigned long last = atomic64_read(&clock->now); unsigned last_kick = atomic_read(&c->kick_gc); int ret; set_freezable(); while (1) { while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } if (atomic_read(&c->kick_gc) != last_kick) break; if (c->btree_gc_periodic) { unsigned long next = last + c->capacity / 16; if (atomic64_read(&clock->now) >= next) break; bch2_io_clock_schedule_timeout(clock, next); } else { schedule(); } try_to_freeze(); } __set_current_state(TASK_RUNNING); last = atomic64_read(&clock->now); last_kick = atomic_read(&c->kick_gc); /* * Full gc is currently incompatible with btree key cache: */ #if 0 ret = bch2_gc(c, false, false); #else ret = bch2_gc_gens(c); #endif if (ret < 0) bch_err_fn(c, ret); debug_check_no_locks_held(); } return 0; } void bch2_gc_thread_stop(struct bch_fs *c) { struct task_struct *p; p = c->gc_thread; c->gc_thread = NULL; if (p) { kthread_stop(p); put_task_struct(p); } } int bch2_gc_thread_start(struct bch_fs *c) { struct task_struct *p; if (c->gc_thread) return 0; p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name); if (IS_ERR(p)) { bch_err_fn(c, PTR_ERR(p)); return PTR_ERR(p); } get_task_struct(p); c->gc_thread = p; wake_up_process(p); return 0; }