// SPDX-License-Identifier: GPL-2.0-only /* * ACPI probing code for ARM performance counters. * * Copyright (C) 2017 ARM Ltd. */ #include #include #include #include #include #include #include #include #include static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus); static DEFINE_PER_CPU(int, pmu_irqs); static int arm_pmu_acpi_register_irq(int cpu) { struct acpi_madt_generic_interrupt *gicc; int gsi, trigger; gicc = acpi_cpu_get_madt_gicc(cpu); gsi = gicc->performance_interrupt; /* * Per the ACPI spec, the MADT cannot describe a PMU that doesn't * have an interrupt. QEMU advertises this by using a GSI of zero, * which is not known to be valid on any hardware despite being * valid per the spec. Take the pragmatic approach and reject a * GSI of zero for now. */ if (!gsi) return 0; if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) trigger = ACPI_EDGE_SENSITIVE; else trigger = ACPI_LEVEL_SENSITIVE; /* * Helpfully, the MADT GICC doesn't have a polarity flag for the * "performance interrupt". Luckily, on compliant GICs the polarity is * a fixed value in HW (for both SPIs and PPIs) that we cannot change * from SW. * * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This * may not match the real polarity, but that should not matter. * * Other interrupt controllers are not supported with ACPI. */ return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH); } static void arm_pmu_acpi_unregister_irq(int cpu) { struct acpi_madt_generic_interrupt *gicc; int gsi; gicc = acpi_cpu_get_madt_gicc(cpu); gsi = gicc->performance_interrupt; if (gsi) acpi_unregister_gsi(gsi); } static int __maybe_unused arm_acpi_register_pmu_device(struct platform_device *pdev, u8 len, u16 (*parse_gsi)(struct acpi_madt_generic_interrupt *)) { int cpu, this_hetid, hetid, irq, ret; u16 this_gsi = 0, gsi = 0; /* * Ensure that platform device must have IORESOURCE_IRQ * resource to hold gsi interrupt. */ if (pdev->num_resources != 1) return -ENXIO; if (pdev->resource[0].flags != IORESOURCE_IRQ) return -ENXIO; /* * Sanity check all the GICC tables for the same interrupt * number. For now, only support homogeneous ACPI machines. */ for_each_possible_cpu(cpu) { struct acpi_madt_generic_interrupt *gicc; gicc = acpi_cpu_get_madt_gicc(cpu); if (gicc->header.length < len) return gsi ? -ENXIO : 0; this_gsi = parse_gsi(gicc); this_hetid = find_acpi_cpu_topology_hetero_id(cpu); if (!gsi) { hetid = this_hetid; gsi = this_gsi; } else if (hetid != this_hetid || gsi != this_gsi) { pr_warn("ACPI: %s: must be homogeneous\n", pdev->name); return -ENXIO; } } if (!this_gsi) return 0; irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_HIGH); if (irq < 0) { pr_warn("ACPI: %s Unable to register interrupt: %d\n", pdev->name, gsi); return -ENXIO; } pdev->resource[0].start = irq; ret = platform_device_register(pdev); if (ret) acpi_unregister_gsi(gsi); return ret; } #if IS_ENABLED(CONFIG_ARM_SPE_PMU) static struct resource spe_resources[] = { { /* irq */ .flags = IORESOURCE_IRQ, } }; static struct platform_device spe_dev = { .name = ARMV8_SPE_PDEV_NAME, .id = -1, .resource = spe_resources, .num_resources = ARRAY_SIZE(spe_resources) }; static u16 arm_spe_parse_gsi(struct acpi_madt_generic_interrupt *gicc) { return gicc->spe_interrupt; } /* * For lack of a better place, hook the normal PMU MADT walk * and create a SPE device if we detect a recent MADT with * a homogeneous PPI mapping. */ static void arm_spe_acpi_register_device(void) { int ret = arm_acpi_register_pmu_device(&spe_dev, ACPI_MADT_GICC_SPE, arm_spe_parse_gsi); if (ret) pr_warn("ACPI: SPE: Unable to register device\n"); } #else static inline void arm_spe_acpi_register_device(void) { } #endif /* CONFIG_ARM_SPE_PMU */ #if IS_ENABLED(CONFIG_CORESIGHT_TRBE) static struct resource trbe_resources[] = { { /* irq */ .flags = IORESOURCE_IRQ, } }; static struct platform_device trbe_dev = { .name = ARMV8_TRBE_PDEV_NAME, .id = -1, .resource = trbe_resources, .num_resources = ARRAY_SIZE(trbe_resources) }; static u16 arm_trbe_parse_gsi(struct acpi_madt_generic_interrupt *gicc) { return gicc->trbe_interrupt; } static void arm_trbe_acpi_register_device(void) { int ret = arm_acpi_register_pmu_device(&trbe_dev, ACPI_MADT_GICC_TRBE, arm_trbe_parse_gsi); if (ret) pr_warn("ACPI: TRBE: Unable to register device\n"); } #else static inline void arm_trbe_acpi_register_device(void) { } #endif /* CONFIG_CORESIGHT_TRBE */ static int arm_pmu_acpi_parse_irqs(void) { int irq, cpu, irq_cpu, err; for_each_possible_cpu(cpu) { irq = arm_pmu_acpi_register_irq(cpu); if (irq < 0) { err = irq; pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n", cpu, err); goto out_err; } else if (irq == 0) { pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu); } /* * Log and request the IRQ so the core arm_pmu code can manage * it. We'll have to sanity-check IRQs later when we associate * them with their PMUs. */ per_cpu(pmu_irqs, cpu) = irq; err = armpmu_request_irq(irq, cpu); if (err) goto out_err; } return 0; out_err: for_each_possible_cpu(cpu) { irq = per_cpu(pmu_irqs, cpu); if (!irq) continue; arm_pmu_acpi_unregister_irq(cpu); /* * Blat all copies of the IRQ so that we only unregister the * corresponding GSI once (e.g. when we have PPIs). */ for_each_possible_cpu(irq_cpu) { if (per_cpu(pmu_irqs, irq_cpu) == irq) per_cpu(pmu_irqs, irq_cpu) = 0; } } return err; } static struct arm_pmu *arm_pmu_acpi_find_pmu(void) { unsigned long cpuid = read_cpuid_id(); struct arm_pmu *pmu; int cpu; for_each_possible_cpu(cpu) { pmu = per_cpu(probed_pmus, cpu); if (!pmu || pmu->acpi_cpuid != cpuid) continue; return pmu; } return NULL; } /* * Check whether the new IRQ is compatible with those already associated with * the PMU (e.g. we don't have mismatched PPIs). */ static bool pmu_irq_matches(struct arm_pmu *pmu, int irq) { struct pmu_hw_events __percpu *hw_events = pmu->hw_events; int cpu; if (!irq) return true; for_each_cpu(cpu, &pmu->supported_cpus) { int other_irq = per_cpu(hw_events->irq, cpu); if (!other_irq) continue; if (irq == other_irq) continue; if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq)) continue; pr_warn("mismatched PPIs detected\n"); return false; } return true; } static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu, unsigned int cpu) { int irq = per_cpu(pmu_irqs, cpu); per_cpu(probed_pmus, cpu) = pmu; if (pmu_irq_matches(pmu, irq)) { struct pmu_hw_events __percpu *hw_events; hw_events = pmu->hw_events; per_cpu(hw_events->irq, cpu) = irq; } cpumask_set_cpu(cpu, &pmu->supported_cpus); } /* * This must run before the common arm_pmu hotplug logic, so that we can * associate a CPU and its interrupt before the common code tries to manage the * affinity and so on. * * Note that hotplug events are serialized, so we cannot race with another CPU * coming up. The perf core won't open events while a hotplug event is in * progress. */ static int arm_pmu_acpi_cpu_starting(unsigned int cpu) { struct arm_pmu *pmu; /* If we've already probed this CPU, we have nothing to do */ if (per_cpu(probed_pmus, cpu)) return 0; pmu = arm_pmu_acpi_find_pmu(); if (!pmu) { pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n", cpu); return 0; } arm_pmu_acpi_associate_pmu_cpu(pmu, cpu); return 0; } static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu, unsigned long cpuid) { int cpu; for_each_online_cpu(cpu) { unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr; if (cpu_cpuid == cpuid) arm_pmu_acpi_associate_pmu_cpu(pmu, cpu); } } int arm_pmu_acpi_probe(armpmu_init_fn init_fn) { int pmu_idx = 0; unsigned int cpu; int ret; ret = arm_pmu_acpi_parse_irqs(); if (ret) return ret; ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING, "perf/arm/pmu_acpi:starting", arm_pmu_acpi_cpu_starting, NULL); if (ret) return ret; /* * Initialise and register the set of PMUs which we know about right * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we * could handle late hotplug, but this may lead to deadlock since we * might try to register a hotplug notifier instance from within a * hotplug notifier. * * There's also the problem of having access to the right init_fn, * without tying this too deeply into the "real" PMU driver. * * For the moment, as with the platform/DT case, we need at least one * of a PMU's CPUs to be online at probe time. */ for_each_online_cpu(cpu) { struct arm_pmu *pmu = per_cpu(probed_pmus, cpu); unsigned long cpuid; char *base_name; /* If we've already probed this CPU, we have nothing to do */ if (pmu) continue; pmu = armpmu_alloc(); if (!pmu) { pr_warn("Unable to allocate PMU for CPU%d\n", cpu); return -ENOMEM; } cpuid = per_cpu(cpu_data, cpu).reg_midr; pmu->acpi_cpuid = cpuid; arm_pmu_acpi_probe_matching_cpus(pmu, cpuid); ret = init_fn(pmu); if (ret == -ENODEV) { /* PMU not handled by this driver, or not present */ continue; } else if (ret) { pr_warn("Unable to initialise PMU for CPU%d\n", cpu); return ret; } base_name = pmu->name; pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++); if (!pmu->name) { pr_warn("Unable to allocate PMU name for CPU%d\n", cpu); return -ENOMEM; } ret = armpmu_register(pmu); if (ret) { pr_warn("Failed to register PMU for CPU%d\n", cpu); kfree(pmu->name); return ret; } } return ret; } static int arm_pmu_acpi_init(void) { if (acpi_disabled) return 0; arm_spe_acpi_register_device(); arm_trbe_acpi_register_device(); return 0; } subsys_initcall(arm_pmu_acpi_init)