// SPDX-License-Identifier: GPL-2.0 /* * Fast Ethernet Controller (ENET) PTP driver for MX6x. * * Copyright (C) 2012 Freescale Semiconductor, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/bitops.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/phy.h> #include <linux/fec.h> #include <linux/of.h> #include <linux/of_gpio.h> #include <linux/of_net.h> #include "fec.h" /* FEC 1588 register bits */ #define FEC_T_CTRL_SLAVE 0x00002000 #define FEC_T_CTRL_CAPTURE 0x00000800 #define FEC_T_CTRL_RESTART 0x00000200 #define FEC_T_CTRL_PERIOD_RST 0x00000030 #define FEC_T_CTRL_PERIOD_EN 0x00000010 #define FEC_T_CTRL_ENABLE 0x00000001 #define FEC_T_INC_MASK 0x0000007f #define FEC_T_INC_OFFSET 0 #define FEC_T_INC_CORR_MASK 0x00007f00 #define FEC_T_INC_CORR_OFFSET 8 #define FEC_T_CTRL_PINPER 0x00000080 #define FEC_T_TF0_MASK 0x00000001 #define FEC_T_TF0_OFFSET 0 #define FEC_T_TF1_MASK 0x00000002 #define FEC_T_TF1_OFFSET 1 #define FEC_T_TF2_MASK 0x00000004 #define FEC_T_TF2_OFFSET 2 #define FEC_T_TF3_MASK 0x00000008 #define FEC_T_TF3_OFFSET 3 #define FEC_T_TDRE_MASK 0x00000001 #define FEC_T_TDRE_OFFSET 0 #define FEC_T_TMODE_MASK 0x0000003C #define FEC_T_TMODE_OFFSET 2 #define FEC_T_TIE_MASK 0x00000040 #define FEC_T_TIE_OFFSET 6 #define FEC_T_TF_MASK 0x00000080 #define FEC_T_TF_OFFSET 7 #define FEC_ATIME_CTRL 0x400 #define FEC_ATIME 0x404 #define FEC_ATIME_EVT_OFFSET 0x408 #define FEC_ATIME_EVT_PERIOD 0x40c #define FEC_ATIME_CORR 0x410 #define FEC_ATIME_INC 0x414 #define FEC_TS_TIMESTAMP 0x418 #define FEC_TGSR 0x604 #define FEC_TCSR(n) (0x608 + n * 0x08) #define FEC_TCCR(n) (0x60C + n * 0x08) #define MAX_TIMER_CHANNEL 3 #define FEC_TMODE_TOGGLE 0x05 #define FEC_HIGH_PULSE 0x0F #define FEC_CC_MULT (1 << 31) #define FEC_COUNTER_PERIOD (1 << 31) #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC #define FEC_CHANNLE_0 0 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0 #define FEC_PTP_MAX_NSEC_PERIOD 4000000000ULL #define FEC_PTP_MAX_NSEC_COUNTER 0x80000000ULL /** * fec_ptp_enable_pps * @fep: the fec_enet_private structure handle * @enable: enable the channel pps output * * This function enble the PPS ouput on the timer channel. */ static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable) { unsigned long flags; u32 val, tempval; struct timespec64 ts; u64 ns; spin_lock_irqsave(&fep->tmreg_lock, flags); if (fep->pps_enable == enable) { spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } if (enable) { /* clear capture or output compare interrupt status if have. */ writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel)); /* It is recommended to double check the TMODE field in the * TCSR register to be cleared before the first compare counter * is written into TCCR register. Just add a double check. */ val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); do { val &= ~(FEC_T_TMODE_MASK); writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); } while (val & FEC_T_TMODE_MASK); /* Dummy read counter to update the counter */ timecounter_read(&fep->tc); /* We want to find the first compare event in the next * second point. So we need to know what the ptp time * is now and how many nanoseconds is ahead to get next second. * The remaining nanosecond ahead before the next second would be * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds * to current timer would be next second. */ tempval = fep->cc.read(&fep->cc); /* Convert the ptp local counter to 1588 timestamp */ ns = timecounter_cyc2time(&fep->tc, tempval); ts = ns_to_timespec64(ns); /* The tempval is less than 3 seconds, and so val is less than * 4 seconds. No overflow for 32bit calculation. */ val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval; /* Need to consider the situation that the current time is * very close to the second point, which means NSEC_PER_SEC * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer * is still running when we calculate the first compare event, it is * possible that the remaining nanoseonds run out before the compare * counter is calculated and written into TCCR register. To avoid * this possibility, we will set the compare event to be the next * of next second. The current setting is 31-bit timer and wrap * around over 2 seconds. So it is okay to set the next of next * seond for the timer. */ val += NSEC_PER_SEC; /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current * ptp counter, which maybe cause 32-bit wrap. Since the * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second. * We can ensure the wrap will not cause issue. If the offset * is bigger than fep->cc.mask would be a error. */ val &= fep->cc.mask; writel(val, fep->hwp + FEC_TCCR(fep->pps_channel)); /* Calculate the second the compare event timestamp */ fep->next_counter = (val + fep->reload_period) & fep->cc.mask; /* * Enable compare event when overflow */ val = readl(fep->hwp + FEC_ATIME_CTRL); val |= FEC_T_CTRL_PINPER; writel(val, fep->hwp + FEC_ATIME_CTRL); /* Compare channel setting. */ val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); val &= ~(1 << FEC_T_TDRE_OFFSET); val &= ~(FEC_T_TMODE_MASK); val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET); writel(val, fep->hwp + FEC_TCSR(fep->pps_channel)); /* Write the second compare event timestamp and calculate * the third timestamp. Refer the TCCR register detail in the spec. */ writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; } else { writel(0, fep->hwp + FEC_TCSR(fep->pps_channel)); } fep->pps_enable = enable; spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } static int fec_ptp_pps_perout(struct fec_enet_private *fep) { u32 compare_val, ptp_hc, temp_val; u64 curr_time; unsigned long flags; spin_lock_irqsave(&fep->tmreg_lock, flags); /* Update time counter */ timecounter_read(&fep->tc); /* Get the current ptp hardware time counter */ temp_val = readl(fep->hwp + FEC_ATIME_CTRL); temp_val |= FEC_T_CTRL_CAPTURE; writel(temp_val, fep->hwp + FEC_ATIME_CTRL); if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) udelay(1); ptp_hc = readl(fep->hwp + FEC_ATIME); /* Convert the ptp local counter to 1588 timestamp */ curr_time = timecounter_cyc2time(&fep->tc, ptp_hc); /* If the pps start time less than current time add 100ms, just return. * Because the software might not able to set the comparison time into * the FEC_TCCR register in time and missed the start time. */ if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) { dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n"); spin_unlock_irqrestore(&fep->tmreg_lock, flags); return -1; } compare_val = fep->perout_stime - curr_time + ptp_hc; compare_val &= fep->cc.mask; writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel)); fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask; /* Enable compare event when overflow */ temp_val = readl(fep->hwp + FEC_ATIME_CTRL); temp_val |= FEC_T_CTRL_PINPER; writel(temp_val, fep->hwp + FEC_ATIME_CTRL); /* Compare channel setting. */ temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel)); temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET); temp_val &= ~(1 << FEC_T_TDRE_OFFSET); temp_val &= ~(FEC_T_TMODE_MASK); temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET); writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel)); /* Write the second compare event timestamp and calculate * the third timestamp. Refer the TCCR register detail in the spec. */ writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel)); fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer) { struct fec_enet_private *fep = container_of(timer, struct fec_enet_private, perout_timer); fec_ptp_pps_perout(fep); return HRTIMER_NORESTART; } /** * fec_ptp_read - read raw cycle counter (to be used by time counter) * @cc: the cyclecounter structure * * this function reads the cyclecounter registers and is called by the * cyclecounter structure used to construct a ns counter from the * arbitrary fixed point registers */ static u64 fec_ptp_read(const struct cyclecounter *cc) { struct fec_enet_private *fep = container_of(cc, struct fec_enet_private, cc); u32 tempval; tempval = readl(fep->hwp + FEC_ATIME_CTRL); tempval |= FEC_T_CTRL_CAPTURE; writel(tempval, fep->hwp + FEC_ATIME_CTRL); if (fep->quirks & FEC_QUIRK_BUG_CAPTURE) udelay(1); return readl(fep->hwp + FEC_ATIME); } /** * fec_ptp_start_cyclecounter - create the cycle counter from hw * @ndev: network device * * this function initializes the timecounter and cyclecounter * structures for use in generated a ns counter from the arbitrary * fixed point cycles registers in the hardware. */ void fec_ptp_start_cyclecounter(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); unsigned long flags; int inc; inc = 1000000000 / fep->cycle_speed; /* grab the ptp lock */ spin_lock_irqsave(&fep->tmreg_lock, flags); /* 1ns counter */ writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC); /* use 31-bit timer counter */ writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD); writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST, fep->hwp + FEC_ATIME_CTRL); memset(&fep->cc, 0, sizeof(fep->cc)); fep->cc.read = fec_ptp_read; fep->cc.mask = CLOCKSOURCE_MASK(31); fep->cc.shift = 31; fep->cc.mult = FEC_CC_MULT; /* reset the ns time counter */ timecounter_init(&fep->tc, &fep->cc, 0); spin_unlock_irqrestore(&fep->tmreg_lock, flags); } /** * fec_ptp_adjfine - adjust ptp cycle frequency * @ptp: the ptp clock structure * @scaled_ppm: scaled parts per million adjustment from base * * Adjust the frequency of the ptp cycle counter by the * indicated amount from the base frequency. * * Scaled parts per million is ppm with a 16-bit binary fractional field. * * Because ENET hardware frequency adjust is complex, * using software method to do that. */ static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { s32 ppb = scaled_ppm_to_ppb(scaled_ppm); unsigned long flags; int neg_adj = 0; u32 i, tmp; u32 corr_inc, corr_period; u32 corr_ns; u64 lhs, rhs; struct fec_enet_private *fep = container_of(ptp, struct fec_enet_private, ptp_caps); if (ppb == 0) return 0; if (ppb < 0) { ppb = -ppb; neg_adj = 1; } /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC; * Try to find the corr_inc between 1 to fep->ptp_inc to * meet adjustment requirement. */ lhs = NSEC_PER_SEC; rhs = (u64)ppb * (u64)fep->ptp_inc; for (i = 1; i <= fep->ptp_inc; i++) { if (lhs >= rhs) { corr_inc = i; corr_period = div_u64(lhs, rhs); break; } lhs += NSEC_PER_SEC; } /* Not found? Set it to high value - double speed * correct in every clock step. */ if (i > fep->ptp_inc) { corr_inc = fep->ptp_inc; corr_period = 1; } if (neg_adj) corr_ns = fep->ptp_inc - corr_inc; else corr_ns = fep->ptp_inc + corr_inc; spin_lock_irqsave(&fep->tmreg_lock, flags); tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK; tmp |= corr_ns << FEC_T_INC_CORR_OFFSET; writel(tmp, fep->hwp + FEC_ATIME_INC); corr_period = corr_period > 1 ? corr_period - 1 : corr_period; writel(corr_period, fep->hwp + FEC_ATIME_CORR); /* dummy read to update the timer. */ timecounter_read(&fep->tc); spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } /** * fec_ptp_adjtime * @ptp: the ptp clock structure * @delta: offset to adjust the cycle counter by * * adjust the timer by resetting the timecounter structure. */ static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct fec_enet_private *fep = container_of(ptp, struct fec_enet_private, ptp_caps); unsigned long flags; spin_lock_irqsave(&fep->tmreg_lock, flags); timecounter_adjtime(&fep->tc, delta); spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } /** * fec_ptp_gettime * @ptp: the ptp clock structure * @ts: timespec structure to hold the current time value * * read the timecounter and return the correct value on ns, * after converting it into a struct timespec. */ static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct fec_enet_private *fep = container_of(ptp, struct fec_enet_private, ptp_caps); u64 ns; unsigned long flags; mutex_lock(&fep->ptp_clk_mutex); /* Check the ptp clock */ if (!fep->ptp_clk_on) { mutex_unlock(&fep->ptp_clk_mutex); return -EINVAL; } spin_lock_irqsave(&fep->tmreg_lock, flags); ns = timecounter_read(&fep->tc); spin_unlock_irqrestore(&fep->tmreg_lock, flags); mutex_unlock(&fep->ptp_clk_mutex); *ts = ns_to_timespec64(ns); return 0; } /** * fec_ptp_settime * @ptp: the ptp clock structure * @ts: the timespec containing the new time for the cycle counter * * reset the timecounter to use a new base value instead of the kernel * wall timer value. */ static int fec_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct fec_enet_private *fep = container_of(ptp, struct fec_enet_private, ptp_caps); u64 ns; unsigned long flags; u32 counter; mutex_lock(&fep->ptp_clk_mutex); /* Check the ptp clock */ if (!fep->ptp_clk_on) { mutex_unlock(&fep->ptp_clk_mutex); return -EINVAL; } ns = timespec64_to_ns(ts); /* Get the timer value based on timestamp. * Update the counter with the masked value. */ counter = ns & fep->cc.mask; spin_lock_irqsave(&fep->tmreg_lock, flags); writel(counter, fep->hwp + FEC_ATIME); timecounter_init(&fep->tc, &fep->cc, ns); spin_unlock_irqrestore(&fep->tmreg_lock, flags); mutex_unlock(&fep->ptp_clk_mutex); return 0; } static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel) { unsigned long flags; spin_lock_irqsave(&fep->tmreg_lock, flags); writel(0, fep->hwp + FEC_TCSR(channel)); spin_unlock_irqrestore(&fep->tmreg_lock, flags); return 0; } /** * fec_ptp_enable * @ptp: the ptp clock structure * @rq: the requested feature to change * @on: whether to enable or disable the feature * */ static int fec_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct fec_enet_private *fep = container_of(ptp, struct fec_enet_private, ptp_caps); ktime_t timeout; struct timespec64 start_time, period; u64 curr_time, delta, period_ns; unsigned long flags; int ret = 0; if (rq->type == PTP_CLK_REQ_PPS) { fep->pps_channel = DEFAULT_PPS_CHANNEL; fep->reload_period = PPS_OUPUT_RELOAD_PERIOD; ret = fec_ptp_enable_pps(fep, on); return ret; } else if (rq->type == PTP_CLK_REQ_PEROUT) { /* Reject requests with unsupported flags */ if (rq->perout.flags) return -EOPNOTSUPP; if (rq->perout.index != DEFAULT_PPS_CHANNEL) return -EOPNOTSUPP; fep->pps_channel = DEFAULT_PPS_CHANNEL; period.tv_sec = rq->perout.period.sec; period.tv_nsec = rq->perout.period.nsec; period_ns = timespec64_to_ns(&period); /* FEC PTP timer only has 31 bits, so if the period exceed * 4s is not supported. */ if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) { dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n"); return -EOPNOTSUPP; } fep->reload_period = div_u64(period_ns, 2); if (on && fep->reload_period) { /* Convert 1588 timestamp to ns*/ start_time.tv_sec = rq->perout.start.sec; start_time.tv_nsec = rq->perout.start.nsec; fep->perout_stime = timespec64_to_ns(&start_time); mutex_lock(&fep->ptp_clk_mutex); if (!fep->ptp_clk_on) { dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n"); mutex_unlock(&fep->ptp_clk_mutex); return -EOPNOTSUPP; } spin_lock_irqsave(&fep->tmreg_lock, flags); /* Read current timestamp */ curr_time = timecounter_read(&fep->tc); spin_unlock_irqrestore(&fep->tmreg_lock, flags); mutex_unlock(&fep->ptp_clk_mutex); /* Calculate time difference */ delta = fep->perout_stime - curr_time; if (fep->perout_stime <= curr_time) { dev_err(&fep->pdev->dev, "Start time must larger than current time!\n"); return -EINVAL; } /* Because the timer counter of FEC only has 31-bits, correspondingly, * the time comparison register FEC_TCCR also only low 31 bits can be * set. If the start time of pps signal exceeds current time more than * 0x80000000 ns, a software timer is used and the timer expires about * 1 second before the start time to be able to set FEC_TCCR. */ if (delta > FEC_PTP_MAX_NSEC_COUNTER) { timeout = ns_to_ktime(delta - NSEC_PER_SEC); hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL); } else { return fec_ptp_pps_perout(fep); } } else { fec_ptp_pps_disable(fep, fep->pps_channel); } return 0; } else { return -EOPNOTSUPP; } } int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { struct fec_enet_private *fep = netdev_priv(ndev); switch (config->tx_type) { case HWTSTAMP_TX_OFF: fep->hwts_tx_en = 0; break; case HWTSTAMP_TX_ON: fep->hwts_tx_en = 1; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: fep->hwts_rx_en = 0; break; default: fep->hwts_rx_en = 1; config->rx_filter = HWTSTAMP_FILTER_ALL; break; } return 0; } void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config) { struct fec_enet_private *fep = netdev_priv(ndev); config->flags = 0; config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; config->rx_filter = (fep->hwts_rx_en ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); } /* * fec_time_keep - call timecounter_read every second to avoid timer overrun * because ENET just support 32bit counter, will timeout in 4s */ static void fec_time_keep(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep); unsigned long flags; mutex_lock(&fep->ptp_clk_mutex); if (fep->ptp_clk_on) { spin_lock_irqsave(&fep->tmreg_lock, flags); timecounter_read(&fep->tc); spin_unlock_irqrestore(&fep->tmreg_lock, flags); } mutex_unlock(&fep->ptp_clk_mutex); schedule_delayed_work(&fep->time_keep, HZ); } /* This function checks the pps event and reloads the timer compare counter. */ static irqreturn_t fec_pps_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct fec_enet_private *fep = netdev_priv(ndev); u32 val; u8 channel = fep->pps_channel; struct ptp_clock_event event; val = readl(fep->hwp + FEC_TCSR(channel)); if (val & FEC_T_TF_MASK) { /* Write the next next compare(not the next according the spec) * value to the register */ writel(fep->next_counter, fep->hwp + FEC_TCCR(channel)); do { writel(val, fep->hwp + FEC_TCSR(channel)); } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK); /* Update the counter; */ fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask; event.type = PTP_CLOCK_PPS; ptp_clock_event(fep->ptp_clock, &event); return IRQ_HANDLED; } return IRQ_NONE; } /** * fec_ptp_init * @pdev: The FEC network adapter * @irq_idx: the interrupt index * * This function performs the required steps for enabling ptp * support. If ptp support has already been loaded it simply calls the * cyclecounter init routine and exits. */ void fec_ptp_init(struct platform_device *pdev, int irq_idx) { struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); int irq; int ret; fep->ptp_caps.owner = THIS_MODULE; strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name)); fep->ptp_caps.max_adj = 250000000; fep->ptp_caps.n_alarm = 0; fep->ptp_caps.n_ext_ts = 0; fep->ptp_caps.n_per_out = 1; fep->ptp_caps.n_pins = 0; fep->ptp_caps.pps = 1; fep->ptp_caps.adjfine = fec_ptp_adjfine; fep->ptp_caps.adjtime = fec_ptp_adjtime; fep->ptp_caps.gettime64 = fec_ptp_gettime; fep->ptp_caps.settime64 = fec_ptp_settime; fep->ptp_caps.enable = fec_ptp_enable; fep->cycle_speed = clk_get_rate(fep->clk_ptp); if (!fep->cycle_speed) { fep->cycle_speed = NSEC_PER_SEC; dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n"); } fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed; spin_lock_init(&fep->tmreg_lock); fec_ptp_start_cyclecounter(ndev); INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep); hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL); fep->perout_timer.function = fec_ptp_pps_perout_handler; irq = platform_get_irq_byname_optional(pdev, "pps"); if (irq < 0) irq = platform_get_irq_optional(pdev, irq_idx); /* Failure to get an irq is not fatal, * only the PTP_CLOCK_PPS clock events should stop */ if (irq >= 0) { ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt, 0, pdev->name, ndev); if (ret < 0) dev_warn(&pdev->dev, "request for pps irq failed(%d)\n", ret); } fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev); if (IS_ERR(fep->ptp_clock)) { fep->ptp_clock = NULL; dev_err(&pdev->dev, "ptp_clock_register failed\n"); } schedule_delayed_work(&fep->time_keep, HZ); } void fec_ptp_stop(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); cancel_delayed_work_sync(&fep->time_keep); hrtimer_cancel(&fep->perout_timer); if (fep->ptp_clock) ptp_clock_unregister(fep->ptp_clock); }