// SPDX-License-Identifier: GPL-2.0 /* Maximum size of each resync request */ #define RESYNC_BLOCK_SIZE (64*1024) #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) /* * Number of guaranteed raid bios in case of extreme VM load: */ #define NR_RAID_BIOS 256 /* when we get a read error on a read-only array, we redirect to another * device without failing the first device, or trying to over-write to * correct the read error. To keep track of bad blocks on a per-bio * level, we store IO_BLOCKED in the appropriate 'bios' pointer */ #define IO_BLOCKED ((struct bio *)1) /* When we successfully write to a known bad-block, we need to remove the * bad-block marking which must be done from process context. So we record * the success by setting devs[n].bio to IO_MADE_GOOD */ #define IO_MADE_GOOD ((struct bio *)2) #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) #define MAX_PLUG_BIO 32 /* for managing resync I/O pages */ struct resync_pages { void *raid_bio; struct page *pages[RESYNC_PAGES]; }; struct raid1_plug_cb { struct blk_plug_cb cb; struct bio_list pending; unsigned int count; }; static void rbio_pool_free(void *rbio, void *data) { kfree(rbio); } static inline int resync_alloc_pages(struct resync_pages *rp, gfp_t gfp_flags) { int i; for (i = 0; i < RESYNC_PAGES; i++) { rp->pages[i] = alloc_page(gfp_flags); if (!rp->pages[i]) goto out_free; } return 0; out_free: while (--i >= 0) put_page(rp->pages[i]); return -ENOMEM; } static inline void resync_free_pages(struct resync_pages *rp) { int i; for (i = 0; i < RESYNC_PAGES; i++) put_page(rp->pages[i]); } static inline void resync_get_all_pages(struct resync_pages *rp) { int i; for (i = 0; i < RESYNC_PAGES; i++) get_page(rp->pages[i]); } static inline struct page *resync_fetch_page(struct resync_pages *rp, unsigned idx) { if (WARN_ON_ONCE(idx >= RESYNC_PAGES)) return NULL; return rp->pages[idx]; } /* * 'strct resync_pages' stores actual pages used for doing the resync * IO, and it is per-bio, so make .bi_private points to it. */ static inline struct resync_pages *get_resync_pages(struct bio *bio) { return bio->bi_private; } /* generally called after bio_reset() for reseting bvec */ static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp, int size) { int idx = 0; /* initialize bvec table again */ do { struct page *page = resync_fetch_page(rp, idx); int len = min_t(int, size, PAGE_SIZE); if (WARN_ON(!bio_add_page(bio, page, len, 0))) { bio->bi_status = BLK_STS_RESOURCE; bio_endio(bio); return; } size -= len; } while (idx++ < RESYNC_PAGES && size > 0); } static inline void raid1_submit_write(struct bio *bio) { struct md_rdev *rdev = (void *)bio->bi_bdev; bio->bi_next = NULL; bio_set_dev(bio, rdev->bdev); if (test_bit(Faulty, &rdev->flags)) bio_io_error(bio); else if (unlikely(bio_op(bio) == REQ_OP_DISCARD && !bdev_max_discard_sectors(bio->bi_bdev))) /* Just ignore it */ bio_endio(bio); else submit_bio_noacct(bio); } static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio, blk_plug_cb_fn unplug, int copies) { struct raid1_plug_cb *plug = NULL; struct blk_plug_cb *cb; /* * If bitmap is not enabled, it's safe to submit the io directly, and * this can get optimal performance. */ if (!md_bitmap_enabled(mddev->bitmap)) { raid1_submit_write(bio); return true; } cb = blk_check_plugged(unplug, mddev, sizeof(*plug)); if (!cb) return false; plug = container_of(cb, struct raid1_plug_cb, cb); bio_list_add(&plug->pending, bio); if (++plug->count / MAX_PLUG_BIO >= copies) { list_del(&cb->list); cb->callback(cb, false); } return true; } /* * current->bio_list will be set under submit_bio() context, in this case bitmap * io will be added to the list and wait for current io submission to finish, * while current io submission must wait for bitmap io to be done. In order to * avoid such deadlock, submit bitmap io asynchronously. */ static inline void raid1_prepare_flush_writes(struct bitmap *bitmap) { if (current->bio_list) md_bitmap_unplug_async(bitmap); else md_bitmap_unplug(bitmap); }