// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "xe_migrate.h" #include #include #include #include #include #include #include "instructions/xe_mi_commands.h" #include "regs/xe_gpu_commands.h" #include "regs/xe_gtt_defs.h" #include "tests/xe_test.h" #include "xe_assert.h" #include "xe_bb.h" #include "xe_bo.h" #include "xe_exec_queue.h" #include "xe_ggtt.h" #include "xe_gt.h" #include "xe_hw_engine.h" #include "xe_lrc.h" #include "xe_map.h" #include "xe_mocs.h" #include "xe_pt.h" #include "xe_res_cursor.h" #include "xe_sched_job.h" #include "xe_sync.h" #include "xe_trace.h" #include "xe_vm.h" /** * struct xe_migrate - migrate context. */ struct xe_migrate { /** @q: Default exec queue used for migration */ struct xe_exec_queue *q; /** @tile: Backpointer to the tile this struct xe_migrate belongs to. */ struct xe_tile *tile; /** @job_mutex: Timeline mutex for @eng. */ struct mutex job_mutex; /** @pt_bo: Page-table buffer object. */ struct xe_bo *pt_bo; /** @batch_base_ofs: VM offset of the migration batch buffer */ u64 batch_base_ofs; /** @usm_batch_base_ofs: VM offset of the usm batch buffer */ u64 usm_batch_base_ofs; /** @cleared_mem_ofs: VM offset of @cleared_bo. */ u64 cleared_mem_ofs; /** * @fence: dma-fence representing the last migration job batch. * Protected by @job_mutex. */ struct dma_fence *fence; /** * @vm_update_sa: For integrated, used to suballocate page-tables * out of the pt_bo. */ struct drm_suballoc_manager vm_update_sa; /** @min_chunk_size: For dgfx, Minimum chunk size */ u64 min_chunk_size; }; #define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */ #define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */ #define NUM_KERNEL_PDE 17 #define NUM_PT_SLOTS 32 #define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M #define MAX_NUM_PTE 512 /* * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest * legal value accepted. Since that instruction field is always stored in * (val-2) format, this translates to 0x400 dwords for the true maximum length * of the instruction. Subtracting the instruction header (1 dword) and * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values. */ #define MAX_PTE_PER_SDI 0x1FE /** * xe_tile_migrate_engine() - Get this tile's migrate engine. * @tile: The tile. * * Returns the default migrate engine of this tile. * TODO: Perhaps this function is slightly misplaced, and even unneeded? * * Return: The default migrate engine */ struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile) { return tile->migrate->q; } static void xe_migrate_fini(struct drm_device *dev, void *arg) { struct xe_migrate *m = arg; xe_vm_lock(m->q->vm, false); xe_bo_unpin(m->pt_bo); xe_vm_unlock(m->q->vm); dma_fence_put(m->fence); xe_bo_put(m->pt_bo); drm_suballoc_manager_fini(&m->vm_update_sa); mutex_destroy(&m->job_mutex); xe_vm_close_and_put(m->q->vm); xe_exec_queue_put(m->q); } static u64 xe_migrate_vm_addr(u64 slot, u32 level) { XE_WARN_ON(slot >= NUM_PT_SLOTS); /* First slot is reserved for mapping of PT bo and bb, start from 1 */ return (slot + 1ULL) << xe_pt_shift(level + 1); } static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr) { /* * Remove the DPA to get a correct offset into identity table for the * migrate offset */ addr -= xe->mem.vram.dpa_base; return addr + (256ULL << xe_pt_shift(2)); } static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m, struct xe_vm *vm) { struct xe_device *xe = tile_to_xe(tile); u16 pat_index = xe->pat.idx[XE_CACHE_WB]; u8 id = tile->id; u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level; u32 map_ofs, level, i; struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo; u64 entry; /* Can't bump NUM_PT_SLOTS too high */ BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE); /* Must be a multiple of 64K to support all platforms */ BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K); /* And one slot reserved for the 4KiB page table updates */ BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1)); /* Need to be sure everything fits in the first PT, or create more */ xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M); bo = xe_bo_create_pin_map(vm->xe, tile, vm, num_entries * XE_PAGE_SIZE, ttm_bo_type_kernel, XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_PINNED); if (IS_ERR(bo)) return PTR_ERR(bo); entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index); xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry); map_ofs = (num_entries - num_level) * XE_PAGE_SIZE; /* Map the entire BO in our level 0 pt */ for (i = 0, level = 0; i < num_entries; level++) { entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE, pat_index, 0); xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); if (vm->flags & XE_VM_FLAG_64K) i += 16; else i += 1; } if (!IS_DGFX(xe)) { /* Write out batch too */ m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE; for (i = 0; i < batch->size; i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : XE_PAGE_SIZE) { entry = vm->pt_ops->pte_encode_bo(batch, i, pat_index, 0); xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); level++; } if (xe->info.has_usm) { xe_tile_assert(tile, batch->size == SZ_1M); batch = tile->primary_gt->usm.bb_pool->bo; m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M; xe_tile_assert(tile, batch->size == SZ_512K); for (i = 0; i < batch->size; i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE : XE_PAGE_SIZE) { entry = vm->pt_ops->pte_encode_bo(batch, i, pat_index, 0); xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry); level++; } } } else { u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr); if (xe->info.has_usm) { batch = tile->primary_gt->usm.bb_pool->bo; batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE); m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr); } } for (level = 1; level < num_level; level++) { u32 flags = 0; if (vm->flags & XE_VM_FLAG_64K && level == 1) flags = XE_PDE_64K; entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) * XE_PAGE_SIZE, pat_index); xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64, entry | flags); } /* Write PDE's that point to our BO. */ for (i = 0; i < num_entries - num_level; i++) { entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE, pat_index); xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE + (i + 1) * 8, u64, entry); } /* Set up a 1GiB NULL mapping at 255GiB offset. */ level = 2; xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64, vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | XE_PTE_NULL); m->cleared_mem_ofs = (255ULL << xe_pt_shift(level)); /* Identity map the entire vram at 256GiB offset */ if (IS_DGFX(xe)) { u64 pos, ofs, flags; level = 2; ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8; flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, true, 0); /* * Use 1GB pages, it shouldn't matter the physical amount of * vram is less, when we don't access it. */ for (pos = xe->mem.vram.dpa_base; pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base; pos += SZ_1G, ofs += 8) xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags); } /* * Example layout created above, with root level = 3: * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2] * * This makes the lowest part of the VM point to the pagetables. * Hence the lowest 2M in the vm should point to itself, with a few writes * and flushes, other parts of the VM can be used either for copying and * clearing. * * For performance, the kernel reserves PDE's, so about 20 are left * for async VM updates. * * To make it easier to work, each scratch PT is put in slot (1 + PT #) * everywhere, this allows lockless updates to scratch pages by using * the different addresses in VM. */ #define NUM_VMUSA_UNIT_PER_PAGE 32 #define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE) #define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64)) drm_suballoc_manager_init(&m->vm_update_sa, (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) * NUM_VMUSA_UNIT_PER_PAGE, 0); m->pt_bo = bo; return 0; } /* * Including the reserved copy engine is required to avoid deadlocks due to * migrate jobs servicing the faults gets stuck behind the job that faulted. */ static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt) { u32 logical_mask = 0; struct xe_hw_engine *hwe; enum xe_hw_engine_id id; for_each_hw_engine(hwe, gt, id) { if (hwe->class != XE_ENGINE_CLASS_COPY) continue; if (xe_gt_is_usm_hwe(gt, hwe)) logical_mask |= BIT(hwe->logical_instance); } return logical_mask; } /** * xe_migrate_init() - Initialize a migrate context * @tile: Back-pointer to the tile we're initializing for. * * Return: Pointer to a migrate context on success. Error pointer on error. */ struct xe_migrate *xe_migrate_init(struct xe_tile *tile) { struct xe_device *xe = tile_to_xe(tile); struct xe_gt *primary_gt = tile->primary_gt; struct xe_migrate *m; struct xe_vm *vm; int err; m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL); if (!m) return ERR_PTR(-ENOMEM); m->tile = tile; /* Special layout, prepared below.. */ vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION | XE_VM_FLAG_SET_TILE_ID(tile)); if (IS_ERR(vm)) return ERR_CAST(vm); xe_vm_lock(vm, false); err = xe_migrate_prepare_vm(tile, m, vm); xe_vm_unlock(vm); if (err) { xe_vm_close_and_put(vm); return ERR_PTR(err); } if (xe->info.has_usm) { struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt, XE_ENGINE_CLASS_COPY, primary_gt->usm.reserved_bcs_instance, false); u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt); if (!hwe || !logical_mask) return ERR_PTR(-EINVAL); /* * XXX: Currently only reserving 1 (likely slow) BCS instance on * PVC, may want to revisit if performance is needed. */ m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe, EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_PERMANENT | EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0); } else { m->q = xe_exec_queue_create_class(xe, primary_gt, vm, XE_ENGINE_CLASS_COPY, EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_PERMANENT); } if (IS_ERR(m->q)) { xe_vm_close_and_put(vm); return ERR_CAST(m->q); } mutex_init(&m->job_mutex); err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m); if (err) return ERR_PTR(err); if (IS_DGFX(xe)) { if (xe_device_has_flat_ccs(xe)) /* min chunk size corresponds to 4K of CCS Metadata */ m->min_chunk_size = SZ_4K * SZ_64K / xe_device_ccs_bytes(xe, SZ_64K); else /* Somewhat arbitrary to avoid a huge amount of blits */ m->min_chunk_size = SZ_64K; m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size); drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n", (unsigned long long)m->min_chunk_size); } return m; } static u64 max_mem_transfer_per_pass(struct xe_device *xe) { if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe)) return MAX_CCS_LIMITED_TRANSFER; return MAX_PREEMPTDISABLE_TRANSFER; } static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur) { struct xe_device *xe = tile_to_xe(m->tile); u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining); if (mem_type_is_vram(cur->mem_type)) { /* * VRAM we want to blit in chunks with sizes aligned to * min_chunk_size in order for the offset to CCS metadata to be * page-aligned. If it's the last chunk it may be smaller. * * Another constraint is that we need to limit the blit to * the VRAM block size, unless size is smaller than * min_chunk_size. */ u64 chunk = max_t(u64, cur->size, m->min_chunk_size); size = min_t(u64, size, chunk); if (size > m->min_chunk_size) size = round_down(size, m->min_chunk_size); } return size; } static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur) { /* If the chunk is not fragmented, allow identity map. */ return cur->size >= size; } static u32 pte_update_size(struct xe_migrate *m, bool is_vram, struct ttm_resource *res, struct xe_res_cursor *cur, u64 *L0, u64 *L0_ofs, u32 *L0_pt, u32 cmd_size, u32 pt_ofs, u32 avail_pts) { u32 cmds = 0; *L0_pt = pt_ofs; if (is_vram && xe_migrate_allow_identity(*L0, cur)) { /* Offset into identity map. */ *L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile), cur->start + vram_region_gpu_offset(res)); cmds += cmd_size; } else { /* Clip L0 to available size */ u64 size = min(*L0, (u64)avail_pts * SZ_2M); u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT; *L0 = size; *L0_ofs = xe_migrate_vm_addr(pt_ofs, 0); /* MI_STORE_DATA_IMM */ cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI); /* PDE qwords */ cmds += num_4k_pages * 2; /* Each chunk has a single blit command */ cmds += cmd_size; } return cmds; } static void emit_pte(struct xe_migrate *m, struct xe_bb *bb, u32 at_pt, bool is_vram, bool is_comp_pte, struct xe_res_cursor *cur, u32 size, struct ttm_resource *res) { struct xe_device *xe = tile_to_xe(m->tile); struct xe_vm *vm = m->q->vm; u16 pat_index; u32 ptes; u64 ofs = (u64)at_pt * XE_PAGE_SIZE; u64 cur_ofs; /* Indirect access needs compression enabled uncached PAT index */ if (GRAPHICS_VERx100(xe) >= 2000) pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] : xe->pat.idx[XE_CACHE_WB]; else pat_index = xe->pat.idx[XE_CACHE_WB]; ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE); while (ptes) { u32 chunk = min(MAX_PTE_PER_SDI, ptes); bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); bb->cs[bb->len++] = ofs; bb->cs[bb->len++] = 0; cur_ofs = ofs; ofs += chunk * 8; ptes -= chunk; while (chunk--) { u64 addr, flags = 0; bool devmem = false; addr = xe_res_dma(cur) & PAGE_MASK; if (is_vram) { if (vm->flags & XE_VM_FLAG_64K) { u64 va = cur_ofs * XE_PAGE_SIZE / 8; xe_assert(xe, (va & (SZ_64K - 1)) == (addr & (SZ_64K - 1))); flags |= XE_PTE_PS64; } addr += vram_region_gpu_offset(res); devmem = true; } addr = vm->pt_ops->pte_encode_addr(m->tile->xe, addr, pat_index, 0, devmem, flags); bb->cs[bb->len++] = lower_32_bits(addr); bb->cs[bb->len++] = upper_32_bits(addr); xe_res_next(cur, min_t(u32, size, PAGE_SIZE)); cur_ofs += 8; } } } #define EMIT_COPY_CCS_DW 5 static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb, u64 dst_ofs, bool dst_is_indirect, u64 src_ofs, bool src_is_indirect, u32 size) { struct xe_device *xe = gt_to_xe(gt); u32 *cs = bb->cs + bb->len; u32 num_ccs_blks; u32 num_pages; u32 ccs_copy_size; u32 mocs; if (GRAPHICS_VERx100(xe) >= 2000) { num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE); xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1)); ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1); mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index); } else { num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size), NUM_CCS_BYTES_PER_BLOCK); xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1)); ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1); mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index); } *cs++ = XY_CTRL_SURF_COPY_BLT | (src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT | (dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT | ccs_copy_size; *cs++ = lower_32_bits(src_ofs); *cs++ = upper_32_bits(src_ofs) | mocs; *cs++ = lower_32_bits(dst_ofs); *cs++ = upper_32_bits(dst_ofs) | mocs; bb->len = cs - bb->cs; } #define EMIT_COPY_DW 10 static void emit_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, u64 dst_ofs, unsigned int size, unsigned int pitch) { struct xe_device *xe = gt_to_xe(gt); u32 mocs = 0; u32 tile_y = 0; xe_gt_assert(gt, size / pitch <= S16_MAX); xe_gt_assert(gt, pitch / 4 <= S16_MAX); xe_gt_assert(gt, pitch <= U16_MAX); if (GRAPHICS_VER(xe) >= 20) mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index); if (GRAPHICS_VERx100(xe) >= 1250) tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4; bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2); bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs; bb->cs[bb->len++] = 0; bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4; bb->cs[bb->len++] = lower_32_bits(dst_ofs); bb->cs[bb->len++] = upper_32_bits(dst_ofs); bb->cs[bb->len++] = 0; bb->cs[bb->len++] = pitch | mocs; bb->cs[bb->len++] = lower_32_bits(src_ofs); bb->cs[bb->len++] = upper_32_bits(src_ofs); } static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv, enum dma_resv_usage usage) { return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage); } static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm) { return usm ? m->usm_batch_base_ofs : m->batch_base_ofs; } static u32 xe_migrate_ccs_copy(struct xe_migrate *m, struct xe_bb *bb, u64 src_ofs, bool src_is_indirect, u64 dst_ofs, bool dst_is_indirect, u32 dst_size, u64 ccs_ofs, bool copy_ccs) { struct xe_gt *gt = m->tile->primary_gt; u32 flush_flags = 0; if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) { /* * If the src is already in vram, then it should already * have been cleared by us, or has been populated by the * user. Make sure we copy the CCS aux state as-is. * * Otherwise if the bo doesn't have any CCS metadata attached, * we still need to clear it for security reasons. */ u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs; emit_copy_ccs(gt, bb, dst_ofs, true, ccs_src_ofs, src_is_indirect, dst_size); flush_flags = MI_FLUSH_DW_CCS; } else if (copy_ccs) { if (!src_is_indirect) src_ofs = ccs_ofs; else if (!dst_is_indirect) dst_ofs = ccs_ofs; xe_gt_assert(gt, src_is_indirect || dst_is_indirect); emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs, src_is_indirect, dst_size); if (dst_is_indirect) flush_flags = MI_FLUSH_DW_CCS; } return flush_flags; } /** * xe_migrate_copy() - Copy content of TTM resources. * @m: The migration context. * @src_bo: The buffer object @src is currently bound to. * @dst_bo: If copying between resources created for the same bo, set this to * the same value as @src_bo. If copying between buffer objects, set it to * the buffer object @dst is currently bound to. * @src: The source TTM resource. * @dst: The dst TTM resource. * @copy_only_ccs: If true copy only CCS metadata * * Copies the contents of @src to @dst: On flat CCS devices, * the CCS metadata is copied as well if needed, or if not present, * the CCS metadata of @dst is cleared for security reasons. * * Return: Pointer to a dma_fence representing the last copy batch, or * an error pointer on failure. If there is a failure, any copy operation * started by the function call has been synced. */ struct dma_fence *xe_migrate_copy(struct xe_migrate *m, struct xe_bo *src_bo, struct xe_bo *dst_bo, struct ttm_resource *src, struct ttm_resource *dst, bool copy_only_ccs) { struct xe_gt *gt = m->tile->primary_gt; struct xe_device *xe = gt_to_xe(gt); struct dma_fence *fence = NULL; u64 size = src_bo->size; struct xe_res_cursor src_it, dst_it, ccs_it; u64 src_L0_ofs, dst_L0_ofs; u32 src_L0_pt, dst_L0_pt; u64 src_L0, dst_L0; int pass = 0; int err; bool src_is_pltt = src->mem_type == XE_PL_TT; bool dst_is_pltt = dst->mem_type == XE_PL_TT; bool src_is_vram = mem_type_is_vram(src->mem_type); bool dst_is_vram = mem_type_is_vram(dst->mem_type); bool copy_ccs = xe_device_has_flat_ccs(xe) && xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo); bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram); /* Copying CCS between two different BOs is not supported yet. */ if (XE_WARN_ON(copy_ccs && src_bo != dst_bo)) return ERR_PTR(-EINVAL); if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size)) return ERR_PTR(-EINVAL); if (!src_is_vram) xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it); else xe_res_first(src, 0, size, &src_it); if (!dst_is_vram) xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it); else xe_res_first(dst, 0, size, &dst_it); if (copy_system_ccs) xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo), PAGE_ALIGN(xe_device_ccs_bytes(xe, size)), &ccs_it); while (size) { u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */ struct xe_sched_job *job; struct xe_bb *bb; u32 flush_flags; u32 update_idx; u64 ccs_ofs, ccs_size; u32 ccs_pt; bool usm = xe->info.has_usm; u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; src_L0 = xe_migrate_res_sizes(m, &src_it); dst_L0 = xe_migrate_res_sizes(m, &dst_it); drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n", pass++, src_L0, dst_L0); src_L0 = min(src_L0, dst_L0); batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0, &src_L0_ofs, &src_L0_pt, 0, 0, avail_pts); batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0, &dst_L0_ofs, &dst_L0_pt, 0, avail_pts, avail_pts); if (copy_system_ccs) { ccs_size = xe_device_ccs_bytes(xe, src_L0); batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size, &ccs_ofs, &ccs_pt, 0, 2 * avail_pts, avail_pts); xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE)); } /* Add copy commands size here */ batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) + ((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0)); bb = xe_bb_new(gt, batch_size, usm); if (IS_ERR(bb)) { err = PTR_ERR(bb); goto err_sync; } if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it)) xe_res_next(&src_it, src_L0); else emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs, &src_it, src_L0, src); if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it)) xe_res_next(&dst_it, src_L0); else emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs, &dst_it, src_L0, dst); if (copy_system_ccs) emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src); bb->cs[bb->len++] = MI_BATCH_BUFFER_END; update_idx = bb->len; if (!copy_only_ccs) emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE); flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs, IS_DGFX(xe) ? src_is_vram : src_is_pltt, dst_L0_ofs, IS_DGFX(xe) ? dst_is_vram : dst_is_pltt, src_L0, ccs_ofs, copy_ccs); mutex_lock(&m->job_mutex); job = xe_bb_create_migration_job(m->q, bb, xe_migrate_batch_base(m, usm), update_idx); if (IS_ERR(job)) { err = PTR_ERR(job); goto err; } xe_sched_job_add_migrate_flush(job, flush_flags); if (!fence) { err = job_add_deps(job, src_bo->ttm.base.resv, DMA_RESV_USAGE_BOOKKEEP); if (!err && src_bo != dst_bo) err = job_add_deps(job, dst_bo->ttm.base.resv, DMA_RESV_USAGE_BOOKKEEP); if (err) goto err_job; } xe_sched_job_arm(job); dma_fence_put(fence); fence = dma_fence_get(&job->drm.s_fence->finished); xe_sched_job_push(job); dma_fence_put(m->fence); m->fence = dma_fence_get(fence); mutex_unlock(&m->job_mutex); xe_bb_free(bb, fence); size -= src_L0; continue; err_job: xe_sched_job_put(job); err: mutex_unlock(&m->job_mutex); xe_bb_free(bb, NULL); err_sync: /* Sync partial copy if any. FIXME: under job_mutex? */ if (fence) { dma_fence_wait(fence, false); dma_fence_put(fence); } return ERR_PTR(err); } return fence; } static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, u32 size, u32 pitch) { struct xe_device *xe = gt_to_xe(gt); u32 *cs = bb->cs + bb->len; u32 len = PVC_MEM_SET_CMD_LEN_DW; *cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2); *cs++ = pitch - 1; *cs++ = (size / pitch) - 1; *cs++ = pitch - 1; *cs++ = lower_32_bits(src_ofs); *cs++ = upper_32_bits(src_ofs); if (GRAPHICS_VERx100(xe) >= 2000) *cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); else *cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index); xe_gt_assert(gt, cs - bb->cs == len + bb->len); bb->len += len; } static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, u32 size, u32 pitch, bool is_vram) { struct xe_device *xe = gt_to_xe(gt); u32 *cs = bb->cs + bb->len; u32 len = XY_FAST_COLOR_BLT_DW; if (GRAPHICS_VERx100(xe) < 1250) len = 11; *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | (len - 2); if (GRAPHICS_VERx100(xe) >= 2000) *cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) | (pitch - 1); else *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) | (pitch - 1); *cs++ = 0; *cs++ = (size / pitch) << 16 | pitch / 4; *cs++ = lower_32_bits(src_ofs); *cs++ = upper_32_bits(src_ofs); *cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; if (len > 11) { *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; *cs++ = 0; } xe_gt_assert(gt, cs - bb->cs == len + bb->len); bb->len += len; } static bool has_service_copy_support(struct xe_gt *gt) { /* * What we care about is whether the architecture was designed with * service copy functionality (specifically the new MEM_SET / MEM_COPY * instructions) so check the architectural engine list rather than the * actual list since these instructions are usable on BCS0 even if * all of the actual service copy engines (BCS1-BCS8) have been fused * off. */ return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8, XE_HW_ENGINE_BCS1); } static u32 emit_clear_cmd_len(struct xe_gt *gt) { if (has_service_copy_support(gt)) return PVC_MEM_SET_CMD_LEN_DW; else return XY_FAST_COLOR_BLT_DW; } static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs, u32 size, u32 pitch, bool is_vram) { if (has_service_copy_support(gt)) emit_clear_link_copy(gt, bb, src_ofs, size, pitch); else emit_clear_main_copy(gt, bb, src_ofs, size, pitch, is_vram); } /** * xe_migrate_clear() - Copy content of TTM resources. * @m: The migration context. * @bo: The buffer object @dst is currently bound to. * @dst: The dst TTM resource to be cleared. * * Clear the contents of @dst to zero. On flat CCS devices, * the CCS metadata is cleared to zero as well on VRAM destinations. * TODO: Eliminate the @bo argument. * * Return: Pointer to a dma_fence representing the last clear batch, or * an error pointer on failure. If there is a failure, any clear operation * started by the function call has been synced. */ struct dma_fence *xe_migrate_clear(struct xe_migrate *m, struct xe_bo *bo, struct ttm_resource *dst) { bool clear_vram = mem_type_is_vram(dst->mem_type); struct xe_gt *gt = m->tile->primary_gt; struct xe_device *xe = gt_to_xe(gt); bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false; struct dma_fence *fence = NULL; u64 size = bo->size; struct xe_res_cursor src_it; struct ttm_resource *src = dst; int err; if (!clear_vram) xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it); else xe_res_first(src, 0, bo->size, &src_it); while (size) { u64 clear_L0_ofs; u32 clear_L0_pt; u32 flush_flags = 0; u64 clear_L0; struct xe_sched_job *job; struct xe_bb *bb; u32 batch_size, update_idx; bool usm = xe->info.has_usm; u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE; clear_L0 = xe_migrate_res_sizes(m, &src_it); /* Calculate final sizes and batch size.. */ batch_size = 2 + pte_update_size(m, clear_vram, src, &src_it, &clear_L0, &clear_L0_ofs, &clear_L0_pt, clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0, avail_pts); if (xe_device_has_flat_ccs(xe)) batch_size += EMIT_COPY_CCS_DW; /* Clear commands */ if (WARN_ON_ONCE(!clear_L0)) break; bb = xe_bb_new(gt, batch_size, usm); if (IS_ERR(bb)) { err = PTR_ERR(bb); goto err_sync; } size -= clear_L0; /* Preemption is enabled again by the ring ops. */ if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it)) xe_res_next(&src_it, clear_L0); else emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs, &src_it, clear_L0, dst); bb->cs[bb->len++] = MI_BATCH_BUFFER_END; update_idx = bb->len; if (!clear_system_ccs) emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram); if (xe_device_has_flat_ccs(xe)) { emit_copy_ccs(gt, bb, clear_L0_ofs, true, m->cleared_mem_ofs, false, clear_L0); flush_flags = MI_FLUSH_DW_CCS; } mutex_lock(&m->job_mutex); job = xe_bb_create_migration_job(m->q, bb, xe_migrate_batch_base(m, usm), update_idx); if (IS_ERR(job)) { err = PTR_ERR(job); goto err; } xe_sched_job_add_migrate_flush(job, flush_flags); if (!fence) { /* * There can't be anything userspace related at this * point, so we just need to respect any potential move * fences, which are always tracked as * DMA_RESV_USAGE_KERNEL. */ err = job_add_deps(job, bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL); if (err) goto err_job; } xe_sched_job_arm(job); dma_fence_put(fence); fence = dma_fence_get(&job->drm.s_fence->finished); xe_sched_job_push(job); dma_fence_put(m->fence); m->fence = dma_fence_get(fence); mutex_unlock(&m->job_mutex); xe_bb_free(bb, fence); continue; err_job: xe_sched_job_put(job); err: mutex_unlock(&m->job_mutex); xe_bb_free(bb, NULL); err_sync: /* Sync partial copies if any. FIXME: job_mutex? */ if (fence) { dma_fence_wait(m->fence, false); dma_fence_put(fence); } return ERR_PTR(err); } if (clear_system_ccs) bo->ccs_cleared = true; return fence; } static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs, const struct xe_vm_pgtable_update *update, struct xe_migrate_pt_update *pt_update) { const struct xe_migrate_pt_update_ops *ops = pt_update->ops; u32 chunk; u32 ofs = update->ofs, size = update->qwords; /* * If we have 512 entries (max), we would populate it ourselves, * and update the PDE above it to the new pointer. * The only time this can only happen if we have to update the top * PDE. This requires a BO that is almost vm->size big. * * This shouldn't be possible in practice.. might change when 16K * pages are used. Hence the assert. */ xe_tile_assert(tile, update->qwords < MAX_NUM_PTE); if (!ppgtt_ofs) ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile), xe_bo_addr(update->pt_bo, 0, XE_PAGE_SIZE)); do { u64 addr = ppgtt_ofs + ofs * 8; chunk = min(size, MAX_PTE_PER_SDI); /* Ensure populatefn can do memset64 by aligning bb->cs */ if (!(bb->len & 1)) bb->cs[bb->len++] = MI_NOOP; bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk); bb->cs[bb->len++] = lower_32_bits(addr); bb->cs[bb->len++] = upper_32_bits(addr); ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk, update); bb->len += chunk * 2; ofs += chunk; size -= chunk; } while (size); } struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m) { return xe_vm_get(m->q->vm); } #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) struct migrate_test_params { struct xe_test_priv base; bool force_gpu; }; #define to_migrate_test_params(_priv) \ container_of(_priv, struct migrate_test_params, base) #endif static struct dma_fence * xe_migrate_update_pgtables_cpu(struct xe_migrate *m, struct xe_vm *vm, struct xe_bo *bo, const struct xe_vm_pgtable_update *updates, u32 num_updates, bool wait_vm, struct xe_migrate_pt_update *pt_update) { XE_TEST_DECLARE(struct migrate_test_params *test = to_migrate_test_params (xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));) const struct xe_migrate_pt_update_ops *ops = pt_update->ops; struct dma_fence *fence; int err; u32 i; if (XE_TEST_ONLY(test && test->force_gpu)) return ERR_PTR(-ETIME); if (bo && !dma_resv_test_signaled(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL)) return ERR_PTR(-ETIME); if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm), DMA_RESV_USAGE_BOOKKEEP)) return ERR_PTR(-ETIME); if (ops->pre_commit) { pt_update->job = NULL; err = ops->pre_commit(pt_update); if (err) return ERR_PTR(err); } for (i = 0; i < num_updates; i++) { const struct xe_vm_pgtable_update *update = &updates[i]; ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL, update->ofs, update->qwords, update); } if (vm) { trace_xe_vm_cpu_bind(vm); xe_device_wmb(vm->xe); } fence = dma_fence_get_stub(); return fence; } static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q, struct xe_sync_entry *syncs, u32 num_syncs) { struct dma_fence *fence; int i; for (i = 0; i < num_syncs; i++) { fence = syncs[i].fence; if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) return false; } if (q) { fence = xe_exec_queue_last_fence_get(q, vm); if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { dma_fence_put(fence); return false; } dma_fence_put(fence); } return true; } /** * xe_migrate_update_pgtables() - Pipelined page-table update * @m: The migrate context. * @vm: The vm we'll be updating. * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr. * @q: The exec queue to be used for the update or NULL if the default * migration engine is to be used. * @updates: An array of update descriptors. * @num_updates: Number of descriptors in @updates. * @syncs: Array of xe_sync_entry to await before updating. Note that waits * will block the engine timeline. * @num_syncs: Number of entries in @syncs. * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains * pointers to callback functions and, if subclassed, private arguments to * those. * * Perform a pipelined page-table update. The update descriptors are typically * built under the same lock critical section as a call to this function. If * using the default engine for the updates, they will be performed in the * order they grab the job_mutex. If different engines are used, external * synchronization is needed for overlapping updates to maintain page-table * consistency. Note that the meaing of "overlapping" is that the updates * touch the same page-table, which might be a higher-level page-directory. * If no pipelining is needed, then updates may be performed by the cpu. * * Return: A dma_fence that, when signaled, indicates the update completion. */ struct dma_fence * xe_migrate_update_pgtables(struct xe_migrate *m, struct xe_vm *vm, struct xe_bo *bo, struct xe_exec_queue *q, const struct xe_vm_pgtable_update *updates, u32 num_updates, struct xe_sync_entry *syncs, u32 num_syncs, struct xe_migrate_pt_update *pt_update) { const struct xe_migrate_pt_update_ops *ops = pt_update->ops; struct xe_tile *tile = m->tile; struct xe_gt *gt = tile->primary_gt; struct xe_device *xe = tile_to_xe(tile); struct xe_sched_job *job; struct dma_fence *fence; struct drm_suballoc *sa_bo = NULL; struct xe_vma *vma = pt_update->vma; struct xe_bb *bb; u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0; u64 addr; int err = 0; bool usm = !q && xe->info.has_usm; bool first_munmap_rebind = vma && vma->gpuva.flags & XE_VMA_FIRST_REBIND; struct xe_exec_queue *q_override = !q ? m->q : q; u16 pat_index = xe->pat.idx[XE_CACHE_WB]; /* Use the CPU if no in syncs and engine is idle */ if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) { fence = xe_migrate_update_pgtables_cpu(m, vm, bo, updates, num_updates, first_munmap_rebind, pt_update); if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN)) return fence; } /* fixed + PTE entries */ if (IS_DGFX(xe)) batch_size = 2; else batch_size = 6 + num_updates * 2; for (i = 0; i < num_updates; i++) { u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, MAX_PTE_PER_SDI); /* align noop + MI_STORE_DATA_IMM cmd prefix */ batch_size += 4 * num_cmds + updates[i].qwords * 2; } /* * XXX: Create temp bo to copy from, if batch_size becomes too big? * * Worst case: Sum(2 * (each lower level page size) + (top level page size)) * Should be reasonably bound.. */ xe_tile_assert(tile, batch_size < SZ_128K); bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm); if (IS_ERR(bb)) return ERR_CAST(bb); /* For sysmem PTE's, need to map them in our hole.. */ if (!IS_DGFX(xe)) { ppgtt_ofs = NUM_KERNEL_PDE - 1; if (q) { xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT); sa_bo = drm_suballoc_new(&m->vm_update_sa, 1, GFP_KERNEL, true, 0); if (IS_ERR(sa_bo)) { err = PTR_ERR(sa_bo); goto err_bb; } ppgtt_ofs = NUM_KERNEL_PDE + (drm_suballoc_soffset(sa_bo) / NUM_VMUSA_UNIT_PER_PAGE); page_ofs = (drm_suballoc_soffset(sa_bo) % NUM_VMUSA_UNIT_PER_PAGE) * VM_SA_UPDATE_UNIT_SIZE; } /* Map our PT's to gtt */ bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates); bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs; bb->cs[bb->len++] = 0; /* upper_32_bits */ for (i = 0; i < num_updates; i++) { struct xe_bo *pt_bo = updates[i].pt_bo; xe_tile_assert(tile, pt_bo->size == SZ_4K); addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0); bb->cs[bb->len++] = lower_32_bits(addr); bb->cs[bb->len++] = upper_32_bits(addr); } bb->cs[bb->len++] = MI_BATCH_BUFFER_END; update_idx = bb->len; addr = xe_migrate_vm_addr(ppgtt_ofs, 0) + (page_ofs / sizeof(u64)) * XE_PAGE_SIZE; for (i = 0; i < num_updates; i++) write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE, &updates[i], pt_update); } else { /* phys pages, no preamble required */ bb->cs[bb->len++] = MI_BATCH_BUFFER_END; update_idx = bb->len; for (i = 0; i < num_updates; i++) write_pgtable(tile, bb, 0, &updates[i], pt_update); } if (!q) mutex_lock(&m->job_mutex); job = xe_bb_create_migration_job(q ?: m->q, bb, xe_migrate_batch_base(m, usm), update_idx); if (IS_ERR(job)) { err = PTR_ERR(job); goto err_sa; } /* Wait on BO move */ if (bo) { err = job_add_deps(job, bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL); if (err) goto err_job; } /* * Munmap style VM unbind, need to wait for all jobs to be complete / * trigger preempts before moving forward */ if (first_munmap_rebind) { err = job_add_deps(job, xe_vm_resv(vm), DMA_RESV_USAGE_BOOKKEEP); if (err) goto err_job; } err = xe_sched_job_last_fence_add_dep(job, vm); for (i = 0; !err && i < num_syncs; i++) err = xe_sync_entry_add_deps(&syncs[i], job); if (err) goto err_job; if (ops->pre_commit) { pt_update->job = job; err = ops->pre_commit(pt_update); if (err) goto err_job; } xe_sched_job_arm(job); fence = dma_fence_get(&job->drm.s_fence->finished); xe_sched_job_push(job); if (!q) mutex_unlock(&m->job_mutex); xe_bb_free(bb, fence); drm_suballoc_free(sa_bo, fence); return fence; err_job: xe_sched_job_put(job); err_sa: drm_suballoc_free(sa_bo, NULL); err_bb: if (!q) mutex_unlock(&m->job_mutex); xe_bb_free(bb, NULL); return ERR_PTR(err); } /** * xe_migrate_wait() - Complete all operations using the xe_migrate context * @m: Migrate context to wait for. * * Waits until the GPU no longer uses the migrate context's default engine * or its page-table objects. FIXME: What about separate page-table update * engines? */ void xe_migrate_wait(struct xe_migrate *m) { if (m->fence) dma_fence_wait(m->fence, false); } #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) #include "tests/xe_migrate.c" #endif