// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017 Free Electrons * Maxime Ripard <maxime.ripard@free-electrons.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <drm/drm_device.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_plane.h> #include "sun4i_drv.h" #include "sun4i_frontend.h" static const u32 sun4i_frontend_vert_coef[32] = { 0x00004000, 0x000140ff, 0x00033ffe, 0x00043ffd, 0x00063efc, 0xff083dfc, 0x000a3bfb, 0xff0d39fb, 0xff0f37fb, 0xff1136fa, 0xfe1433fb, 0xfe1631fb, 0xfd192ffb, 0xfd1c2cfb, 0xfd1f29fb, 0xfc2127fc, 0xfc2424fc, 0xfc2721fc, 0xfb291ffd, 0xfb2c1cfd, 0xfb2f19fd, 0xfb3116fe, 0xfb3314fe, 0xfa3611ff, 0xfb370fff, 0xfb390dff, 0xfb3b0a00, 0xfc3d08ff, 0xfc3e0600, 0xfd3f0400, 0xfe3f0300, 0xff400100, }; static const u32 sun4i_frontend_horz_coef[64] = { 0x40000000, 0x00000000, 0x40fe0000, 0x0000ff03, 0x3ffd0000, 0x0000ff05, 0x3ffc0000, 0x0000ff06, 0x3efb0000, 0x0000ff08, 0x3dfb0000, 0x0000ff09, 0x3bfa0000, 0x0000fe0d, 0x39fa0000, 0x0000fe0f, 0x38fa0000, 0x0000fe10, 0x36fa0000, 0x0000fe12, 0x33fa0000, 0x0000fd16, 0x31fa0000, 0x0000fd18, 0x2ffa0000, 0x0000fd1a, 0x2cfa0000, 0x0000fc1e, 0x29fa0000, 0x0000fc21, 0x27fb0000, 0x0000fb23, 0x24fb0000, 0x0000fb26, 0x21fb0000, 0x0000fb29, 0x1ffc0000, 0x0000fa2b, 0x1cfc0000, 0x0000fa2e, 0x19fd0000, 0x0000fa30, 0x16fd0000, 0x0000fa33, 0x14fd0000, 0x0000fa35, 0x11fe0000, 0x0000fa37, 0x0ffe0000, 0x0000fa39, 0x0dfe0000, 0x0000fa3b, 0x0afe0000, 0x0000fa3e, 0x08ff0000, 0x0000fb3e, 0x06ff0000, 0x0000fb40, 0x05ff0000, 0x0000fc40, 0x03ff0000, 0x0000fd41, 0x01ff0000, 0x0000fe42, }; /* * These coefficients are taken from the A33 BSP from Allwinner. * * The first three values of each row are coded as 13-bit signed fixed-point * numbers, with 10 bits for the fractional part. The fourth value is a * constant coded as a 14-bit signed fixed-point number with 4 bits for the * fractional part. * * The values in table order give the following colorspace translation: * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135 * R = 1.164 * Y + 1.596 * V - 222 * B = 1.164 * Y + 2.018 * U + 276 * * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255], * following the BT601 spec. */ const u32 sunxi_bt601_yuv2rgb_coef[12] = { 0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877, 0x000004a7, 0x00000000, 0x00000662, 0x00003211, 0x000004a7, 0x00000812, 0x00000000, 0x00002eb1, }; EXPORT_SYMBOL(sunxi_bt601_yuv2rgb_coef); static void sun4i_frontend_scaler_init(struct sun4i_frontend *frontend) { int i; if (frontend->data->has_coef_access_ctrl) regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG, SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL, SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL); for (i = 0; i < 32; i++) { regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF0_REG(i), sun4i_frontend_horz_coef[2 * i]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF0_REG(i), sun4i_frontend_horz_coef[2 * i]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF1_REG(i), sun4i_frontend_horz_coef[2 * i + 1]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF1_REG(i), sun4i_frontend_horz_coef[2 * i + 1]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTCOEF_REG(i), sun4i_frontend_vert_coef[i]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTCOEF_REG(i), sun4i_frontend_vert_coef[i]); } if (frontend->data->has_coef_rdy) regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG, SUN4I_FRONTEND_FRM_CTRL_COEF_RDY, SUN4I_FRONTEND_FRM_CTRL_COEF_RDY); } int sun4i_frontend_init(struct sun4i_frontend *frontend) { return pm_runtime_get_sync(frontend->dev); } EXPORT_SYMBOL(sun4i_frontend_init); void sun4i_frontend_exit(struct sun4i_frontend *frontend) { pm_runtime_put(frontend->dev); } EXPORT_SYMBOL(sun4i_frontend_exit); static bool sun4i_frontend_format_chroma_requires_swap(uint32_t fmt) { switch (fmt) { case DRM_FORMAT_YVU411: case DRM_FORMAT_YVU420: case DRM_FORMAT_YVU422: case DRM_FORMAT_YVU444: return true; default: return false; } } static bool sun4i_frontend_format_supports_tiling(uint32_t fmt) { switch (fmt) { case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: case DRM_FORMAT_YUV411: case DRM_FORMAT_YUV420: case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU420: case DRM_FORMAT_YVU422: case DRM_FORMAT_YVU411: return true; default: return false; } } void sun4i_frontend_update_buffer(struct sun4i_frontend *frontend, struct drm_plane *plane) { struct drm_plane_state *state = plane->state; struct drm_framebuffer *fb = state->fb; unsigned int strides[3] = {}; dma_addr_t dma_addr; bool swap; if (fb->modifier == DRM_FORMAT_MOD_ALLWINNER_TILED) { unsigned int width = state->src_w >> 16; unsigned int offset; strides[0] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[0]); /* * The X1 offset is the offset to the bottom-right point in the * end tile, which is the final pixel (at offset width - 1) * within the end tile (with a 32-byte mask). */ offset = (width - 1) & (32 - 1); regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF0_REG, SUN4I_FRONTEND_TB_OFF_X1(offset)); if (fb->format->num_planes > 1) { strides[1] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[1]); regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF1_REG, SUN4I_FRONTEND_TB_OFF_X1(offset)); } if (fb->format->num_planes > 2) { strides[2] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[2]); regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF2_REG, SUN4I_FRONTEND_TB_OFF_X1(offset)); } } else { strides[0] = fb->pitches[0]; if (fb->format->num_planes > 1) strides[1] = fb->pitches[1]; if (fb->format->num_planes > 2) strides[2] = fb->pitches[2]; } /* Set the line width */ DRM_DEBUG_DRIVER("Frontend stride: %d bytes\n", fb->pitches[0]); regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD0_REG, strides[0]); if (fb->format->num_planes > 1) regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD1_REG, strides[1]); if (fb->format->num_planes > 2) regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD2_REG, strides[2]); /* Some planar formats require chroma channel swapping by hand. */ swap = sun4i_frontend_format_chroma_requires_swap(fb->format->format); /* Set the physical address of the buffer in memory */ dma_addr = drm_fb_dma_get_gem_addr(fb, state, 0); DRM_DEBUG_DRIVER("Setting buffer #0 address to %pad\n", &dma_addr); regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR0_REG, dma_addr); if (fb->format->num_planes > 1) { dma_addr = drm_fb_dma_get_gem_addr(fb, state, swap ? 2 : 1); DRM_DEBUG_DRIVER("Setting buffer #1 address to %pad\n", &dma_addr); regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR1_REG, dma_addr); } if (fb->format->num_planes > 2) { dma_addr = drm_fb_dma_get_gem_addr(fb, state, swap ? 1 : 2); DRM_DEBUG_DRIVER("Setting buffer #2 address to %pad\n", &dma_addr); regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR2_REG, dma_addr); } } EXPORT_SYMBOL(sun4i_frontend_update_buffer); static int sun4i_frontend_drm_format_to_input_fmt(const struct drm_format_info *format, u32 *val) { if (!format->is_yuv) *val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_RGB; else if (drm_format_info_is_yuv_sampling_411(format)) *val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV411; else if (drm_format_info_is_yuv_sampling_420(format)) *val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV420; else if (drm_format_info_is_yuv_sampling_422(format)) *val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV422; else if (drm_format_info_is_yuv_sampling_444(format)) *val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV444; else return -EINVAL; return 0; } static int sun4i_frontend_drm_format_to_input_mode(const struct drm_format_info *format, uint64_t modifier, u32 *val) { bool tiled = (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED); switch (format->num_planes) { case 1: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PACKED; return 0; case 2: *val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_SEMIPLANAR : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_SEMIPLANAR; return 0; case 3: *val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_PLANAR : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PLANAR; return 0; default: return -EINVAL; } } static int sun4i_frontend_drm_format_to_input_sequence(const struct drm_format_info *format, u32 *val) { /* Planar formats have an explicit input sequence. */ if (drm_format_info_is_yuv_planar(format)) { *val = 0; return 0; } switch (format->format) { case DRM_FORMAT_BGRX8888: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_BGRX; return 0; case DRM_FORMAT_NV12: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV; return 0; case DRM_FORMAT_NV16: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV; return 0; case DRM_FORMAT_NV21: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU; return 0; case DRM_FORMAT_NV61: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU; return 0; case DRM_FORMAT_UYVY: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UYVY; return 0; case DRM_FORMAT_VYUY: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VYUY; return 0; case DRM_FORMAT_XRGB8888: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_XRGB; return 0; case DRM_FORMAT_YUYV: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YUYV; return 0; case DRM_FORMAT_YVYU: *val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YVYU; return 0; default: return -EINVAL; } } static int sun4i_frontend_drm_format_to_output_fmt(uint32_t fmt, u32 *val) { switch (fmt) { case DRM_FORMAT_BGRX8888: *val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_BGRX8888; return 0; case DRM_FORMAT_XRGB8888: *val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_XRGB8888; return 0; default: return -EINVAL; } } static const uint32_t sun4i_frontend_formats[] = { DRM_FORMAT_BGRX8888, DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61, DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_XRGB8888, DRM_FORMAT_YUV411, DRM_FORMAT_YUV420, DRM_FORMAT_YUV422, DRM_FORMAT_YUV444, DRM_FORMAT_YUYV, DRM_FORMAT_YVU411, DRM_FORMAT_YVU420, DRM_FORMAT_YVU422, DRM_FORMAT_YVU444, DRM_FORMAT_YVYU, }; bool sun4i_frontend_format_is_supported(uint32_t fmt, uint64_t modifier) { unsigned int i; if (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED) return sun4i_frontend_format_supports_tiling(fmt); else if (modifier != DRM_FORMAT_MOD_LINEAR) return false; for (i = 0; i < ARRAY_SIZE(sun4i_frontend_formats); i++) if (sun4i_frontend_formats[i] == fmt) return true; return false; } EXPORT_SYMBOL(sun4i_frontend_format_is_supported); int sun4i_frontend_update_formats(struct sun4i_frontend *frontend, struct drm_plane *plane, uint32_t out_fmt) { struct drm_plane_state *state = plane->state; struct drm_framebuffer *fb = state->fb; const struct drm_format_info *format = fb->format; uint64_t modifier = fb->modifier; unsigned int ch1_phase_idx; u32 out_fmt_val; u32 in_fmt_val, in_mod_val, in_ps_val; unsigned int i; u32 bypass; int ret; ret = sun4i_frontend_drm_format_to_input_fmt(format, &in_fmt_val); if (ret) { DRM_DEBUG_DRIVER("Invalid input format\n"); return ret; } ret = sun4i_frontend_drm_format_to_input_mode(format, modifier, &in_mod_val); if (ret) { DRM_DEBUG_DRIVER("Invalid input mode\n"); return ret; } ret = sun4i_frontend_drm_format_to_input_sequence(format, &in_ps_val); if (ret) { DRM_DEBUG_DRIVER("Invalid pixel sequence\n"); return ret; } ret = sun4i_frontend_drm_format_to_output_fmt(out_fmt, &out_fmt_val); if (ret) { DRM_DEBUG_DRIVER("Invalid output format\n"); return ret; } /* * I have no idea what this does exactly, but it seems to be * related to the scaler FIR filter phase parameters. */ ch1_phase_idx = (format->num_planes > 1) ? 1 : 0; regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZPHASE_REG, frontend->data->ch_phase[0]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZPHASE_REG, frontend->data->ch_phase[ch1_phase_idx]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE0_REG, frontend->data->ch_phase[0]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE0_REG, frontend->data->ch_phase[ch1_phase_idx]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE1_REG, frontend->data->ch_phase[0]); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE1_REG, frontend->data->ch_phase[ch1_phase_idx]); /* * Checking the input format is sufficient since we currently only * support RGB output formats to the backend. If YUV output formats * ever get supported, an YUV input and output would require bypassing * the CSC engine too. */ if (format->is_yuv) { /* Setup the CSC engine for YUV to RGB conversion. */ bypass = 0; for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++) regmap_write(frontend->regs, SUN4I_FRONTEND_CSC_COEF_REG(i), sunxi_bt601_yuv2rgb_coef[i]); } else { bypass = SUN4I_FRONTEND_BYPASS_CSC_EN; } regmap_update_bits(frontend->regs, SUN4I_FRONTEND_BYPASS_REG, SUN4I_FRONTEND_BYPASS_CSC_EN, bypass); regmap_write(frontend->regs, SUN4I_FRONTEND_INPUT_FMT_REG, in_mod_val | in_fmt_val | in_ps_val); /* * TODO: It look like the A31 and A80 at least will need the * bit 7 (ALPHA_EN) enabled when using a format with alpha (so * ARGB8888). */ regmap_write(frontend->regs, SUN4I_FRONTEND_OUTPUT_FMT_REG, out_fmt_val); return 0; } EXPORT_SYMBOL(sun4i_frontend_update_formats); void sun4i_frontend_update_coord(struct sun4i_frontend *frontend, struct drm_plane *plane) { struct drm_plane_state *state = plane->state; struct drm_framebuffer *fb = state->fb; uint32_t luma_width, luma_height; uint32_t chroma_width, chroma_height; /* Set height and width */ DRM_DEBUG_DRIVER("Frontend size W: %u H: %u\n", state->crtc_w, state->crtc_h); luma_width = state->src_w >> 16; luma_height = state->src_h >> 16; chroma_width = DIV_ROUND_UP(luma_width, fb->format->hsub); chroma_height = DIV_ROUND_UP(luma_height, fb->format->vsub); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_INSIZE_REG, SUN4I_FRONTEND_INSIZE(luma_height, luma_width)); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_INSIZE_REG, SUN4I_FRONTEND_INSIZE(chroma_height, chroma_width)); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_OUTSIZE_REG, SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w)); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_OUTSIZE_REG, SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w)); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZFACT_REG, (luma_width << 16) / state->crtc_w); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZFACT_REG, (chroma_width << 16) / state->crtc_w); regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTFACT_REG, (luma_height << 16) / state->crtc_h); regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTFACT_REG, (chroma_height << 16) / state->crtc_h); regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG, SUN4I_FRONTEND_FRM_CTRL_REG_RDY, SUN4I_FRONTEND_FRM_CTRL_REG_RDY); } EXPORT_SYMBOL(sun4i_frontend_update_coord); int sun4i_frontend_enable(struct sun4i_frontend *frontend) { regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG, SUN4I_FRONTEND_FRM_CTRL_FRM_START, SUN4I_FRONTEND_FRM_CTRL_FRM_START); return 0; } EXPORT_SYMBOL(sun4i_frontend_enable); static const struct regmap_config sun4i_frontend_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x0a14, }; static int sun4i_frontend_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct sun4i_frontend *frontend; struct drm_device *drm = data; struct sun4i_drv *drv = drm->dev_private; void __iomem *regs; frontend = devm_kzalloc(dev, sizeof(*frontend), GFP_KERNEL); if (!frontend) return -ENOMEM; dev_set_drvdata(dev, frontend); frontend->dev = dev; frontend->node = dev->of_node; frontend->data = of_device_get_match_data(dev); if (!frontend->data) return -ENODEV; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); frontend->regs = devm_regmap_init_mmio(dev, regs, &sun4i_frontend_regmap_config); if (IS_ERR(frontend->regs)) { dev_err(dev, "Couldn't create the frontend regmap\n"); return PTR_ERR(frontend->regs); } frontend->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(frontend->reset)) { dev_err(dev, "Couldn't get our reset line\n"); return PTR_ERR(frontend->reset); } frontend->bus_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(frontend->bus_clk)) { dev_err(dev, "Couldn't get our bus clock\n"); return PTR_ERR(frontend->bus_clk); } frontend->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(frontend->mod_clk)) { dev_err(dev, "Couldn't get our mod clock\n"); return PTR_ERR(frontend->mod_clk); } frontend->ram_clk = devm_clk_get(dev, "ram"); if (IS_ERR(frontend->ram_clk)) { dev_err(dev, "Couldn't get our ram clock\n"); return PTR_ERR(frontend->ram_clk); } list_add_tail(&frontend->list, &drv->frontend_list); pm_runtime_enable(dev); return 0; } static void sun4i_frontend_unbind(struct device *dev, struct device *master, void *data) { struct sun4i_frontend *frontend = dev_get_drvdata(dev); list_del(&frontend->list); pm_runtime_force_suspend(dev); } static const struct component_ops sun4i_frontend_ops = { .bind = sun4i_frontend_bind, .unbind = sun4i_frontend_unbind, }; static int sun4i_frontend_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &sun4i_frontend_ops); } static void sun4i_frontend_remove(struct platform_device *pdev) { component_del(&pdev->dev, &sun4i_frontend_ops); } static int sun4i_frontend_runtime_resume(struct device *dev) { struct sun4i_frontend *frontend = dev_get_drvdata(dev); int ret; clk_set_rate(frontend->mod_clk, 300000000); clk_prepare_enable(frontend->bus_clk); clk_prepare_enable(frontend->mod_clk); clk_prepare_enable(frontend->ram_clk); ret = reset_control_reset(frontend->reset); if (ret) { dev_err(dev, "Couldn't reset our device\n"); return ret; } regmap_update_bits(frontend->regs, SUN4I_FRONTEND_EN_REG, SUN4I_FRONTEND_EN_EN, SUN4I_FRONTEND_EN_EN); sun4i_frontend_scaler_init(frontend); return 0; } static int sun4i_frontend_runtime_suspend(struct device *dev) { struct sun4i_frontend *frontend = dev_get_drvdata(dev); clk_disable_unprepare(frontend->ram_clk); clk_disable_unprepare(frontend->mod_clk); clk_disable_unprepare(frontend->bus_clk); reset_control_assert(frontend->reset); return 0; } static const struct dev_pm_ops sun4i_frontend_pm_ops = { .runtime_resume = sun4i_frontend_runtime_resume, .runtime_suspend = sun4i_frontend_runtime_suspend, }; static const struct sun4i_frontend_data sun4i_a10_frontend = { .ch_phase = { 0x000, 0xfc000 }, .has_coef_rdy = true, }; static const struct sun4i_frontend_data sun8i_a33_frontend = { .ch_phase = { 0x400, 0xfc400 }, .has_coef_access_ctrl = true, }; const struct of_device_id sun4i_frontend_of_table[] = { { .compatible = "allwinner,sun4i-a10-display-frontend", .data = &sun4i_a10_frontend }, { .compatible = "allwinner,sun7i-a20-display-frontend", .data = &sun4i_a10_frontend }, { .compatible = "allwinner,sun8i-a23-display-frontend", .data = &sun8i_a33_frontend }, { .compatible = "allwinner,sun8i-a33-display-frontend", .data = &sun8i_a33_frontend }, { } }; EXPORT_SYMBOL(sun4i_frontend_of_table); MODULE_DEVICE_TABLE(of, sun4i_frontend_of_table); static struct platform_driver sun4i_frontend_driver = { .probe = sun4i_frontend_probe, .remove_new = sun4i_frontend_remove, .driver = { .name = "sun4i-frontend", .of_match_table = sun4i_frontend_of_table, .pm = &sun4i_frontend_pm_ops, }, }; module_platform_driver(sun4i_frontend_driver); MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); MODULE_DESCRIPTION("Allwinner A10 Display Engine Frontend Driver"); MODULE_LICENSE("GPL");