// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2010 Matt Turner. * Copyright 2012 Red Hat * * Authors: Matthew Garrett * Matt Turner * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mgag200_drv.h" /* * This file contains setup code for the CRTC. */ void mgag200_crtc_set_gamma_linear(struct mga_device *mdev, const struct drm_format_info *format) { int i; WREG8(DAC_INDEX + MGA1064_INDEX, 0); switch (format->format) { case DRM_FORMAT_RGB565: /* Use better interpolation, to take 32 values from 0 to 255 */ for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4); WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16); WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4); } /* Green has one more bit, so add padding with 0 for red and blue. */ for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, 0); WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16); WREG8(DAC_INDEX + MGA1064_COL_PAL, 0); } break; case DRM_FORMAT_RGB888: case DRM_FORMAT_XRGB8888: for (i = 0; i < MGAG200_LUT_SIZE; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, i); WREG8(DAC_INDEX + MGA1064_COL_PAL, i); WREG8(DAC_INDEX + MGA1064_COL_PAL, i); } break; default: drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n", &format->format); break; } } void mgag200_crtc_set_gamma(struct mga_device *mdev, const struct drm_format_info *format, struct drm_color_lut *lut) { int i; WREG8(DAC_INDEX + MGA1064_INDEX, 0); switch (format->format) { case DRM_FORMAT_RGB565: /* Use better interpolation, to take 32 values from lut[0] to lut[255] */ for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].red >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].blue >> 8); } /* Green has one more bit, so add padding with 0 for red and blue. */ for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, 0); WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, 0); } break; case DRM_FORMAT_RGB888: case DRM_FORMAT_XRGB8888: for (i = 0; i < MGAG200_LUT_SIZE; i++) { WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].red >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].green >> 8); WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].blue >> 8); } break; default: drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n", &format->format); break; } } static inline void mga_wait_vsync(struct mga_device *mdev) { unsigned long timeout = jiffies + HZ/10; unsigned int status = 0; do { status = RREG32(MGAREG_Status); } while ((status & 0x08) && time_before(jiffies, timeout)); timeout = jiffies + HZ/10; status = 0; do { status = RREG32(MGAREG_Status); } while (!(status & 0x08) && time_before(jiffies, timeout)); } static inline void mga_wait_busy(struct mga_device *mdev) { unsigned long timeout = jiffies + HZ; unsigned int status = 0; do { status = RREG8(MGAREG_Status + 2); } while ((status & 0x01) && time_before(jiffies, timeout)); } /* * This is how the framebuffer base address is stored in g200 cards: * * Assume @offset is the gpu_addr variable of the framebuffer object * * Then addr is the number of _pixels_ (not bytes) from the start of * VRAM to the first pixel we want to display. (divided by 2 for 32bit * framebuffers) * * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers * addr<20> -> CRTCEXT0<6> * addr<19-16> -> CRTCEXT0<3-0> * addr<15-8> -> CRTCC<7-0> * addr<7-0> -> CRTCD<7-0> * * CRTCEXT0 has to be programmed last to trigger an update and make the * new addr variable take effect. */ static void mgag200_set_startadd(struct mga_device *mdev, unsigned long offset) { struct drm_device *dev = &mdev->base; u32 startadd; u8 crtcc, crtcd, crtcext0; startadd = offset / 8; if (startadd > 0) drm_WARN_ON_ONCE(dev, mdev->info->bug_no_startadd); /* * Can't store addresses any higher than that, but we also * don't have more than 16 MiB of memory, so it should be fine. */ drm_WARN_ON(dev, startadd > 0x1fffff); RREG_ECRT(0x00, crtcext0); crtcc = (startadd >> 8) & 0xff; crtcd = startadd & 0xff; crtcext0 &= 0xb0; crtcext0 |= ((startadd >> 14) & BIT(6)) | ((startadd >> 16) & 0x0f); WREG_CRT(0x0c, crtcc); WREG_CRT(0x0d, crtcd); WREG_ECRT(0x00, crtcext0); } void mgag200_init_registers(struct mga_device *mdev) { u8 crtc11, misc; WREG_SEQ(2, 0x0f); WREG_SEQ(3, 0x00); WREG_SEQ(4, 0x0e); WREG_CRT(10, 0); WREG_CRT(11, 0); WREG_CRT(12, 0); WREG_CRT(13, 0); WREG_CRT(14, 0); WREG_CRT(15, 0); RREG_CRT(0x11, crtc11); crtc11 &= ~(MGAREG_CRTC11_CRTCPROTECT | MGAREG_CRTC11_VINTEN | MGAREG_CRTC11_VINTCLR); WREG_CRT(0x11, crtc11); misc = RREG8(MGA_MISC_IN); misc |= MGAREG_MISC_IOADSEL; WREG8(MGA_MISC_OUT, misc); } void mgag200_set_mode_regs(struct mga_device *mdev, const struct drm_display_mode *mode) { const struct mgag200_device_info *info = mdev->info; unsigned int hdisplay, hsyncstart, hsyncend, htotal; unsigned int vdisplay, vsyncstart, vsyncend, vtotal; u8 misc, crtcext1, crtcext2, crtcext5; hdisplay = mode->hdisplay / 8 - 1; hsyncstart = mode->hsync_start / 8 - 1; hsyncend = mode->hsync_end / 8 - 1; htotal = mode->htotal / 8 - 1; /* Work around hardware quirk */ if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) htotal++; vdisplay = mode->vdisplay - 1; vsyncstart = mode->vsync_start - 1; vsyncend = mode->vsync_end - 1; vtotal = mode->vtotal - 2; misc = RREG8(MGA_MISC_IN); if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= MGAREG_MISC_HSYNCPOL; else misc &= ~MGAREG_MISC_HSYNCPOL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= MGAREG_MISC_VSYNCPOL; else misc &= ~MGAREG_MISC_VSYNCPOL; crtcext1 = (((htotal - 4) & 0x100) >> 8) | ((hdisplay & 0x100) >> 7) | ((hsyncstart & 0x100) >> 6) | (htotal & 0x40); if (info->has_vidrst) crtcext1 |= MGAREG_CRTCEXT1_VRSTEN | MGAREG_CRTCEXT1_HRSTEN; crtcext2 = ((vtotal & 0xc00) >> 10) | ((vdisplay & 0x400) >> 8) | ((vdisplay & 0xc00) >> 7) | ((vsyncstart & 0xc00) >> 5) | ((vdisplay & 0x400) >> 3); crtcext5 = 0x00; WREG_CRT(0, htotal - 4); WREG_CRT(1, hdisplay); WREG_CRT(2, hdisplay); WREG_CRT(3, (htotal & 0x1F) | 0x80); WREG_CRT(4, hsyncstart); WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); WREG_CRT(6, vtotal & 0xFF); WREG_CRT(7, ((vtotal & 0x100) >> 8) | ((vdisplay & 0x100) >> 7) | ((vsyncstart & 0x100) >> 6) | ((vdisplay & 0x100) >> 5) | ((vdisplay & 0x100) >> 4) | /* linecomp */ ((vtotal & 0x200) >> 4) | ((vdisplay & 0x200) >> 3) | ((vsyncstart & 0x200) >> 2)); WREG_CRT(9, ((vdisplay & 0x200) >> 4) | ((vdisplay & 0x200) >> 3)); WREG_CRT(16, vsyncstart & 0xFF); WREG_CRT(17, (vsyncend & 0x0F) | 0x20); WREG_CRT(18, vdisplay & 0xFF); WREG_CRT(20, 0); WREG_CRT(21, vdisplay & 0xFF); WREG_CRT(22, (vtotal + 1) & 0xFF); WREG_CRT(23, 0xc3); WREG_CRT(24, vdisplay & 0xFF); WREG_ECRT(0x01, crtcext1); WREG_ECRT(0x02, crtcext2); WREG_ECRT(0x05, crtcext5); WREG8(MGA_MISC_OUT, misc); } static u8 mgag200_get_bpp_shift(const struct drm_format_info *format) { static const u8 bpp_shift[] = {0, 1, 0, 2}; return bpp_shift[format->cpp[0] - 1]; } /* * Calculates the HW offset value from the framebuffer's pitch. The * offset is a multiple of the pixel size and depends on the display * format. */ static u32 mgag200_calculate_offset(struct mga_device *mdev, const struct drm_framebuffer *fb) { u32 offset = fb->pitches[0] / fb->format->cpp[0]; u8 bppshift = mgag200_get_bpp_shift(fb->format); if (fb->format->cpp[0] * 8 == 24) offset = (offset * 3) >> (4 - bppshift); else offset = offset >> (4 - bppshift); return offset; } static void mgag200_set_offset(struct mga_device *mdev, const struct drm_framebuffer *fb) { u8 crtc13, crtcext0; u32 offset = mgag200_calculate_offset(mdev, fb); RREG_ECRT(0, crtcext0); crtc13 = offset & 0xff; crtcext0 &= ~MGAREG_CRTCEXT0_OFFSET_MASK; crtcext0 |= (offset >> 4) & MGAREG_CRTCEXT0_OFFSET_MASK; WREG_CRT(0x13, crtc13); WREG_ECRT(0x00, crtcext0); } void mgag200_set_format_regs(struct mga_device *mdev, const struct drm_format_info *format) { struct drm_device *dev = &mdev->base; unsigned int bpp, bppshift, scale; u8 crtcext3, xmulctrl; bpp = format->cpp[0] * 8; bppshift = mgag200_get_bpp_shift(format); switch (bpp) { case 24: scale = ((1 << bppshift) * 3) - 1; break; default: scale = (1 << bppshift) - 1; break; } RREG_ECRT(3, crtcext3); switch (bpp) { case 8: xmulctrl = MGA1064_MUL_CTL_8bits; break; case 16: if (format->depth == 15) xmulctrl = MGA1064_MUL_CTL_15bits; else xmulctrl = MGA1064_MUL_CTL_16bits; break; case 24: xmulctrl = MGA1064_MUL_CTL_24bits; break; case 32: xmulctrl = MGA1064_MUL_CTL_32_24bits; break; default: /* BUG: We should have caught this problem already. */ drm_WARN_ON(dev, "invalid format depth\n"); return; } crtcext3 &= ~GENMASK(2, 0); crtcext3 |= scale; WREG_DAC(MGA1064_MUL_CTL, xmulctrl); WREG_GFX(0, 0x00); WREG_GFX(1, 0x00); WREG_GFX(2, 0x00); WREG_GFX(3, 0x00); WREG_GFX(4, 0x00); WREG_GFX(5, 0x40); /* GCTL6 should be 0x05, but we configure memmapsl to 0xb8000 (text mode), * so that it doesn't hang when running kexec/kdump on G200_SE rev42. */ WREG_GFX(6, 0x0d); WREG_GFX(7, 0x0f); WREG_GFX(8, 0x0f); WREG_ECRT(3, crtcext3); } void mgag200_enable_display(struct mga_device *mdev) { u8 seq0, crtcext1; RREG_SEQ(0x00, seq0); seq0 |= MGAREG_SEQ0_SYNCRST | MGAREG_SEQ0_ASYNCRST; WREG_SEQ(0x00, seq0); /* * TODO: replace busy waiting with vblank IRQ; put * msleep(50) before changing SCROFF */ mga_wait_vsync(mdev); mga_wait_busy(mdev); RREG_ECRT(0x01, crtcext1); crtcext1 &= ~MGAREG_CRTCEXT1_VSYNCOFF; crtcext1 &= ~MGAREG_CRTCEXT1_HSYNCOFF; WREG_ECRT(0x01, crtcext1); } static void mgag200_disable_display(struct mga_device *mdev) { u8 seq0, crtcext1; RREG_SEQ(0x00, seq0); seq0 &= ~MGAREG_SEQ0_SYNCRST; WREG_SEQ(0x00, seq0); /* * TODO: replace busy waiting with vblank IRQ; put * msleep(50) before changing SCROFF */ mga_wait_vsync(mdev); mga_wait_busy(mdev); RREG_ECRT(0x01, crtcext1); crtcext1 |= MGAREG_CRTCEXT1_VSYNCOFF | MGAREG_CRTCEXT1_HSYNCOFF; WREG_ECRT(0x01, crtcext1); } static void mgag200_handle_damage(struct mga_device *mdev, const struct iosys_map *vmap, struct drm_framebuffer *fb, struct drm_rect *clip) { struct iosys_map dst = IOSYS_MAP_INIT_VADDR_IOMEM(mdev->vram); iosys_map_incr(&dst, drm_fb_clip_offset(fb->pitches[0], fb->format, clip)); drm_fb_memcpy(&dst, fb->pitches, vmap, fb, clip); /* Flushing the cache greatly improves latency on x86_64 */ #if defined(CONFIG_DRM_MGAG200_IOBURST_WORKAROUND) if (!vmap->is_iomem) drm_clflush_virt_range(vmap->vaddr + clip->y1 * fb->pitches[0], drm_rect_height(clip) * fb->pitches[0]); #endif } /* * Primary plane */ const uint32_t mgag200_primary_plane_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_RGB888, }; const size_t mgag200_primary_plane_formats_size = ARRAY_SIZE(mgag200_primary_plane_formats); const uint64_t mgag200_primary_plane_fmtmods[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; int mgag200_primary_plane_helper_atomic_check(struct drm_plane *plane, struct drm_atomic_state *new_state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(new_state, plane); struct drm_framebuffer *new_fb = new_plane_state->fb; struct drm_framebuffer *fb = NULL; struct drm_crtc *new_crtc = new_plane_state->crtc; struct drm_crtc_state *new_crtc_state = NULL; struct mgag200_crtc_state *new_mgag200_crtc_state; int ret; if (new_crtc) new_crtc_state = drm_atomic_get_new_crtc_state(new_state, new_crtc); ret = drm_atomic_helper_check_plane_state(new_plane_state, new_crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, true); if (ret) return ret; else if (!new_plane_state->visible) return 0; if (plane->state) fb = plane->state->fb; if (!fb || (fb->format != new_fb->format)) new_crtc_state->mode_changed = true; /* update PLL settings */ new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state); new_mgag200_crtc_state->format = new_fb->format; return 0; } void mgag200_primary_plane_helper_atomic_update(struct drm_plane *plane, struct drm_atomic_state *old_state) { struct drm_device *dev = plane->dev; struct mga_device *mdev = to_mga_device(dev); struct drm_plane_state *plane_state = plane->state; struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(old_state, plane); struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state); struct drm_framebuffer *fb = plane_state->fb; struct drm_atomic_helper_damage_iter iter; struct drm_rect damage; drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state); drm_atomic_for_each_plane_damage(&iter, &damage) { mgag200_handle_damage(mdev, shadow_plane_state->data, fb, &damage); } /* Always scanout image at VRAM offset 0 */ mgag200_set_startadd(mdev, (u32)0); mgag200_set_offset(mdev, fb); } void mgag200_primary_plane_helper_atomic_enable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *dev = plane->dev; struct mga_device *mdev = to_mga_device(dev); u8 seq1; RREG_SEQ(0x01, seq1); seq1 &= ~MGAREG_SEQ1_SCROFF; WREG_SEQ(0x01, seq1); msleep(20); } void mgag200_primary_plane_helper_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *old_state) { struct drm_device *dev = plane->dev; struct mga_device *mdev = to_mga_device(dev); u8 seq1; RREG_SEQ(0x01, seq1); seq1 |= MGAREG_SEQ1_SCROFF; WREG_SEQ(0x01, seq1); msleep(20); } int mgag200_primary_plane_helper_get_scanout_buffer(struct drm_plane *plane, struct drm_scanout_buffer *sb) { struct mga_device *mdev = to_mga_device(plane->dev); struct iosys_map map = IOSYS_MAP_INIT_VADDR_IOMEM(mdev->vram); if (plane->state && plane->state->fb) { sb->format = plane->state->fb->format; sb->width = plane->state->fb->width; sb->height = plane->state->fb->height; sb->pitch[0] = plane->state->fb->pitches[0]; sb->map[0] = map; return 0; } return -ENODEV; } /* * CRTC */ enum drm_mode_status mgag200_crtc_helper_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct mga_device *mdev = to_mga_device(crtc->dev); const struct mgag200_device_info *info = mdev->info; /* * Some devices have additional limits on the size of the * display mode. */ if (mode->hdisplay > info->max_hdisplay) return MODE_VIRTUAL_X; if (mode->vdisplay > info->max_vdisplay) return MODE_VIRTUAL_Y; if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 || (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) { return MODE_H_ILLEGAL; } if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { return MODE_BAD; } return MODE_OK; } int mgag200_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *new_state) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); const struct mgag200_device_funcs *funcs = mdev->funcs; struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc); struct drm_property_blob *new_gamma_lut = new_crtc_state->gamma_lut; int ret; if (!new_crtc_state->enable) return 0; ret = drm_atomic_helper_check_crtc_primary_plane(new_crtc_state); if (ret) return ret; if (new_crtc_state->mode_changed) { if (funcs->pixpllc_atomic_check) { ret = funcs->pixpllc_atomic_check(crtc, new_state); if (ret) return ret; } } if (new_crtc_state->color_mgmt_changed && new_gamma_lut) { if (new_gamma_lut->length != MGAG200_LUT_SIZE * sizeof(struct drm_color_lut)) { drm_dbg(dev, "Wrong size for gamma_lut %zu\n", new_gamma_lut->length); return -EINVAL; } } return 0; } void mgag200_crtc_helper_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *old_state) { struct drm_crtc_state *crtc_state = crtc->state; struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state); struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); if (crtc_state->enable && crtc_state->color_mgmt_changed) { const struct drm_format_info *format = mgag200_crtc_state->format; if (crtc_state->gamma_lut) mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data); else mgag200_crtc_set_gamma_linear(mdev, format); } } void mgag200_crtc_helper_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *old_state) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = to_mga_device(dev); const struct mgag200_device_funcs *funcs = mdev->funcs; struct drm_crtc_state *crtc_state = crtc->state; struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state); const struct drm_format_info *format = mgag200_crtc_state->format; if (funcs->disable_vidrst) funcs->disable_vidrst(mdev); mgag200_set_format_regs(mdev, format); mgag200_set_mode_regs(mdev, adjusted_mode); if (funcs->pixpllc_atomic_update) funcs->pixpllc_atomic_update(crtc, old_state); if (crtc_state->gamma_lut) mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data); else mgag200_crtc_set_gamma_linear(mdev, format); mgag200_enable_display(mdev); if (funcs->enable_vidrst) funcs->enable_vidrst(mdev); } void mgag200_crtc_helper_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *old_state) { struct mga_device *mdev = to_mga_device(crtc->dev); const struct mgag200_device_funcs *funcs = mdev->funcs; if (funcs->disable_vidrst) funcs->disable_vidrst(mdev); mgag200_disable_display(mdev); if (funcs->enable_vidrst) funcs->enable_vidrst(mdev); } void mgag200_crtc_reset(struct drm_crtc *crtc) { struct mgag200_crtc_state *mgag200_crtc_state; if (crtc->state) crtc->funcs->atomic_destroy_state(crtc, crtc->state); mgag200_crtc_state = kzalloc(sizeof(*mgag200_crtc_state), GFP_KERNEL); if (mgag200_crtc_state) __drm_atomic_helper_crtc_reset(crtc, &mgag200_crtc_state->base); else __drm_atomic_helper_crtc_reset(crtc, NULL); } struct drm_crtc_state *mgag200_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct drm_crtc_state *crtc_state = crtc->state; struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state); struct mgag200_crtc_state *new_mgag200_crtc_state; if (!crtc_state) return NULL; new_mgag200_crtc_state = kzalloc(sizeof(*new_mgag200_crtc_state), GFP_KERNEL); if (!new_mgag200_crtc_state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &new_mgag200_crtc_state->base); new_mgag200_crtc_state->format = mgag200_crtc_state->format; memcpy(&new_mgag200_crtc_state->pixpllc, &mgag200_crtc_state->pixpllc, sizeof(new_mgag200_crtc_state->pixpllc)); return &new_mgag200_crtc_state->base; } void mgag200_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state) { struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state); __drm_atomic_helper_crtc_destroy_state(&mgag200_crtc_state->base); kfree(mgag200_crtc_state); } /* * Connector */ int mgag200_vga_connector_helper_get_modes(struct drm_connector *connector) { struct mga_device *mdev = to_mga_device(connector->dev); const struct drm_edid *drm_edid; int count; /* * Protect access to I/O registers from concurrent modesetting * by acquiring the I/O-register lock. */ mutex_lock(&mdev->rmmio_lock); drm_edid = drm_edid_read(connector); drm_edid_connector_update(connector, drm_edid); count = drm_edid_connector_add_modes(connector); drm_edid_free(drm_edid); mutex_unlock(&mdev->rmmio_lock); return count; } /* * Mode config */ static void mgag200_mode_config_helper_atomic_commit_tail(struct drm_atomic_state *state) { struct mga_device *mdev = to_mga_device(state->dev); /* * Concurrent operations could possibly trigger a call to * drm_connector_helper_funcs.get_modes by trying to read the * display modes. Protect access to I/O registers by acquiring * the I/O-register lock. */ mutex_lock(&mdev->rmmio_lock); drm_atomic_helper_commit_tail(state); mutex_unlock(&mdev->rmmio_lock); } static const struct drm_mode_config_helper_funcs mgag200_mode_config_helper_funcs = { .atomic_commit_tail = mgag200_mode_config_helper_atomic_commit_tail, }; /* Calculates a mode's required memory bandwidth (in KiB/sec). */ static uint32_t mgag200_calculate_mode_bandwidth(const struct drm_display_mode *mode, unsigned int bits_per_pixel) { uint32_t total_area, divisor; uint64_t active_area, pixels_per_second, bandwidth; uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8; divisor = 1024; if (!mode->htotal || !mode->vtotal || !mode->clock) return 0; active_area = mode->hdisplay * mode->vdisplay; total_area = mode->htotal * mode->vtotal; pixels_per_second = active_area * mode->clock * 1000; do_div(pixels_per_second, total_area); bandwidth = pixels_per_second * bytes_per_pixel * 100; do_div(bandwidth, divisor); return (uint32_t)bandwidth; } static enum drm_mode_status mgag200_mode_config_mode_valid(struct drm_device *dev, const struct drm_display_mode *mode) { static const unsigned int max_bpp = 4; // DRM_FORMAT_XRGB8888 struct mga_device *mdev = to_mga_device(dev); unsigned long fbsize, fbpages, max_fbpages; const struct mgag200_device_info *info = mdev->info; max_fbpages = mdev->vram_available >> PAGE_SHIFT; fbsize = mode->hdisplay * mode->vdisplay * max_bpp; fbpages = DIV_ROUND_UP(fbsize, PAGE_SIZE); if (fbpages > max_fbpages) return MODE_MEM; /* * Test the mode's required memory bandwidth if the device * specifies a maximum. Not all devices do though. */ if (info->max_mem_bandwidth) { uint32_t mode_bandwidth = mgag200_calculate_mode_bandwidth(mode, max_bpp * 8); if (mode_bandwidth > (info->max_mem_bandwidth * 1024)) return MODE_BAD; } return MODE_OK; } static const struct drm_mode_config_funcs mgag200_mode_config_funcs = { .fb_create = drm_gem_fb_create_with_dirty, .mode_valid = mgag200_mode_config_mode_valid, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; int mgag200_mode_config_init(struct mga_device *mdev, resource_size_t vram_available) { struct drm_device *dev = &mdev->base; int ret; mdev->vram_available = vram_available; ret = drmm_mode_config_init(dev); if (ret) { drm_err(dev, "drmm_mode_config_init() failed: %d\n", ret); return ret; } dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; dev->mode_config.preferred_depth = 24; dev->mode_config.funcs = &mgag200_mode_config_funcs; dev->mode_config.helper_private = &mgag200_mode_config_helper_funcs; return 0; }