/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "reg_helper.h" #include "dcn30/dcn30_dpp.h" #include "basics/conversion.h" #include "dcn30/dcn30_cm_common.h" #define REG(reg)\ dpp->tf_regs->reg #define CTX \ dpp->base.ctx #undef FN #define FN(reg_name, field_name) \ dpp->tf_shift->field_name, dpp->tf_mask->field_name void dpp30_read_state(struct dpp *dpp_base, struct dcn_dpp_state *s) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); uint32_t gamcor_lut_mode, rgam_lut_mode; REG_GET(DPP_CONTROL, DPP_CLOCK_ENABLE, &s->is_enabled); // Pre-degamma (ROM) REG_GET_2(PRE_DEGAM, PRE_DEGAM_MODE, &s->pre_dgam_mode, PRE_DEGAM_SELECT, &s->pre_dgam_select); // Gamma Correction (RAM) REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_MODE_CURRENT, &s->gamcor_mode); if (s->gamcor_mode) { REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_SELECT_CURRENT, &gamcor_lut_mode); if (!gamcor_lut_mode) s->gamcor_mode = LUT_RAM_A; // Otherwise, LUT_RAM_B } // Shaper LUT (RAM), 3D LUT (mode, bit-depth, size) REG_GET(CM_SHAPER_CONTROL, CM_SHAPER_LUT_MODE, &s->shaper_lut_mode); REG_GET(CM_3DLUT_MODE, CM_3DLUT_MODE_CURRENT, &s->lut3d_mode); REG_GET(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_30BIT_EN, &s->lut3d_bit_depth); REG_GET(CM_3DLUT_MODE, CM_3DLUT_SIZE, &s->lut3d_size); // Blend/Out Gamma (RAM) REG_GET(CM_BLNDGAM_CONTROL, CM_BLNDGAM_MODE_CURRENT, &s->rgam_lut_mode); if (s->rgam_lut_mode){ REG_GET(CM_BLNDGAM_CONTROL, CM_BLNDGAM_SELECT_CURRENT, &rgam_lut_mode); if (!rgam_lut_mode) s->rgam_lut_mode = LUT_RAM_A; // Otherwise, LUT_RAM_B } } /*program post scaler scs block in dpp CM*/ void dpp3_program_post_csc( struct dpp *dpp_base, enum dc_color_space color_space, enum dcn10_input_csc_select input_select, const struct out_csc_color_matrix *tbl_entry) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); int i; int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix); const uint16_t *regval = NULL; uint32_t cur_select = 0; enum dcn10_input_csc_select select; struct color_matrices_reg gam_regs; if (input_select == INPUT_CSC_SELECT_BYPASS) { REG_SET(CM_POST_CSC_CONTROL, 0, CM_POST_CSC_MODE, 0); return; } if (tbl_entry == NULL) { for (i = 0; i < arr_size; i++) if (dpp_input_csc_matrix[i].color_space == color_space) { regval = dpp_input_csc_matrix[i].regval; break; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } } else { regval = tbl_entry->regval; } /* determine which CSC matrix (icsc or coma) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ REG_GET(CM_POST_CSC_CONTROL, CM_POST_CSC_MODE_CURRENT, &cur_select); if (cur_select != INPUT_CSC_SELECT_ICSC) select = INPUT_CSC_SELECT_ICSC; else select = INPUT_CSC_SELECT_COMA; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_POST_CSC_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_POST_CSC_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_POST_CSC_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_POST_CSC_C12; if (select == INPUT_CSC_SELECT_ICSC) { gam_regs.csc_c11_c12 = REG(CM_POST_CSC_C11_C12); gam_regs.csc_c33_c34 = REG(CM_POST_CSC_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_POST_CSC_B_C11_C12); gam_regs.csc_c33_c34 = REG(CM_POST_CSC_B_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET(CM_POST_CSC_CONTROL, 0, CM_POST_CSC_MODE, select); } /*CNVC degam unit has read only LUTs*/ void dpp3_set_pre_degam(struct dpp *dpp_base, enum dc_transfer_func_predefined tr) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); int pre_degam_en = 1; int degamma_lut_selection = 0; switch (tr) { case TRANSFER_FUNCTION_LINEAR: case TRANSFER_FUNCTION_UNITY: pre_degam_en = 0; //bypass break; case TRANSFER_FUNCTION_SRGB: degamma_lut_selection = 0; break; case TRANSFER_FUNCTION_BT709: degamma_lut_selection = 4; break; case TRANSFER_FUNCTION_PQ: degamma_lut_selection = 5; break; case TRANSFER_FUNCTION_HLG: degamma_lut_selection = 6; break; case TRANSFER_FUNCTION_GAMMA22: degamma_lut_selection = 1; break; case TRANSFER_FUNCTION_GAMMA24: degamma_lut_selection = 2; break; case TRANSFER_FUNCTION_GAMMA26: degamma_lut_selection = 3; break; default: pre_degam_en = 0; break; } REG_SET_2(PRE_DEGAM, 0, PRE_DEGAM_MODE, pre_degam_en, PRE_DEGAM_SELECT, degamma_lut_selection); } void dpp3_cnv_setup ( struct dpp *dpp_base, enum surface_pixel_format format, enum expansion_mode mode, struct dc_csc_transform input_csc_color_matrix, enum dc_color_space input_color_space, struct cnv_alpha_2bit_lut *alpha_2bit_lut) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); uint32_t pixel_format = 0; uint32_t alpha_en = 1; enum dc_color_space color_space = COLOR_SPACE_SRGB; enum dcn10_input_csc_select select = INPUT_CSC_SELECT_BYPASS; bool force_disable_cursor = false; uint32_t is_2bit = 0; uint32_t alpha_plane_enable = 0; uint32_t dealpha_en = 0, dealpha_ablnd_en = 0; uint32_t realpha_en = 0, realpha_ablnd_en = 0; uint32_t program_prealpha_dealpha = 0; struct out_csc_color_matrix tbl_entry; int i; REG_SET_2(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, FORMAT_EXPANSION_MODE, mode); REG_UPDATE(FORMAT_CONTROL, FORMAT_CNV16, 0); REG_UPDATE(FORMAT_CONTROL, CNVC_BYPASS_MSB_ALIGN, 0); REG_UPDATE(FORMAT_CONTROL, CLAMP_POSITIVE, 0); REG_UPDATE(FORMAT_CONTROL, CLAMP_POSITIVE_C, 0); REG_UPDATE(FORMAT_CONTROL, FORMAT_CROSSBAR_R, 0); REG_UPDATE(FORMAT_CONTROL, FORMAT_CROSSBAR_G, 1); REG_UPDATE(FORMAT_CONTROL, FORMAT_CROSSBAR_B, 2); switch (format) { case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: pixel_format = 1; break; case SURFACE_PIXEL_FORMAT_GRPH_RGB565: pixel_format = 3; alpha_en = 0; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: pixel_format = 8; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: pixel_format = 10; is_2bit = 1; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: force_disable_cursor = false; pixel_format = 65; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: force_disable_cursor = true; pixel_format = 64; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: force_disable_cursor = true; pixel_format = 67; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: force_disable_cursor = true; pixel_format = 66; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616: pixel_format = 26; /* ARGB16161616_UNORM */ break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: pixel_format = 24; break; case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: pixel_format = 25; break; case SURFACE_PIXEL_FORMAT_VIDEO_AYCrCb8888: pixel_format = 12; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FIX: pixel_format = 112; alpha_en = 0; break; case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FIX: pixel_format = 113; alpha_en = 0; break; case SURFACE_PIXEL_FORMAT_VIDEO_ACrYCb2101010: pixel_format = 114; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; is_2bit = 1; break; case SURFACE_PIXEL_FORMAT_VIDEO_CrYCbA1010102: pixel_format = 115; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; is_2bit = 1; break; case SURFACE_PIXEL_FORMAT_GRPH_RGBE: pixel_format = 116; alpha_plane_enable = 0; break; case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA: pixel_format = 116; alpha_plane_enable = 1; break; case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FLOAT: pixel_format = 118; alpha_en = 0; break; case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FLOAT: pixel_format = 119; alpha_en = 0; break; default: break; } /* Set default color space based on format if none is given. */ color_space = input_color_space ? input_color_space : color_space; if (is_2bit == 1 && alpha_2bit_lut != NULL) { REG_UPDATE(ALPHA_2BIT_LUT, ALPHA_2BIT_LUT0, alpha_2bit_lut->lut0); REG_UPDATE(ALPHA_2BIT_LUT, ALPHA_2BIT_LUT1, alpha_2bit_lut->lut1); REG_UPDATE(ALPHA_2BIT_LUT, ALPHA_2BIT_LUT2, alpha_2bit_lut->lut2); REG_UPDATE(ALPHA_2BIT_LUT, ALPHA_2BIT_LUT3, alpha_2bit_lut->lut3); } REG_SET_2(CNVC_SURFACE_PIXEL_FORMAT, 0, CNVC_SURFACE_PIXEL_FORMAT, pixel_format, CNVC_ALPHA_PLANE_ENABLE, alpha_plane_enable); REG_UPDATE(FORMAT_CONTROL, FORMAT_CONTROL__ALPHA_EN, alpha_en); if (program_prealpha_dealpha) { dealpha_en = 1; realpha_en = 1; } REG_SET_2(PRE_DEALPHA, 0, PRE_DEALPHA_EN, dealpha_en, PRE_DEALPHA_ABLND_EN, dealpha_ablnd_en); REG_SET_2(PRE_REALPHA, 0, PRE_REALPHA_EN, realpha_en, PRE_REALPHA_ABLND_EN, realpha_ablnd_en); /* If input adjustment exists, program the ICSC with those values. */ if (input_csc_color_matrix.enable_adjustment == true) { for (i = 0; i < 12; i++) tbl_entry.regval[i] = input_csc_color_matrix.matrix[i]; tbl_entry.color_space = input_color_space; if (color_space >= COLOR_SPACE_YCBCR601) select = INPUT_CSC_SELECT_ICSC; else select = INPUT_CSC_SELECT_BYPASS; dpp3_program_post_csc(dpp_base, color_space, select, &tbl_entry); } else { dpp3_program_post_csc(dpp_base, color_space, select, NULL); } if (force_disable_cursor) { REG_UPDATE(CURSOR_CONTROL, CURSOR_ENABLE, 0); REG_UPDATE(CURSOR0_CONTROL, CUR0_ENABLE, 0); } } #define IDENTITY_RATIO(ratio) (dc_fixpt_u3d19(ratio) == (1 << 19)) void dpp3_set_cursor_attributes( struct dpp *dpp_base, struct dc_cursor_attributes *cursor_attributes) { enum dc_cursor_color_format color_format = cursor_attributes->color_format; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); int cur_rom_en = 0; if (color_format == CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA || color_format == CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA) { if (cursor_attributes->attribute_flags.bits.ENABLE_CURSOR_DEGAMMA) { cur_rom_en = 1; } } REG_UPDATE_3(CURSOR0_CONTROL, CUR0_MODE, color_format, CUR0_EXPANSION_MODE, 0, CUR0_ROM_EN, cur_rom_en); if (color_format == CURSOR_MODE_MONO) { /* todo: clarify what to program these to */ REG_UPDATE(CURSOR0_COLOR0, CUR0_COLOR0, 0x00000000); REG_UPDATE(CURSOR0_COLOR1, CUR0_COLOR1, 0xFFFFFFFF); } dpp_base->att.cur0_ctl.bits.expansion_mode = 0; dpp_base->att.cur0_ctl.bits.cur0_rom_en = cur_rom_en; dpp_base->att.cur0_ctl.bits.mode = color_format; } bool dpp3_get_optimal_number_of_taps( struct dpp *dpp, struct scaler_data *scl_data, const struct scaling_taps *in_taps) { int num_part_y, num_part_c; int max_taps_y, max_taps_c; int min_taps_y, min_taps_c; enum lb_memory_config lb_config; if (scl_data->viewport.width > scl_data->h_active && dpp->ctx->dc->debug.max_downscale_src_width != 0 && scl_data->viewport.width > dpp->ctx->dc->debug.max_downscale_src_width) return false; /* * Set default taps if none are provided * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling * taps = 4 for upscaling */ if (in_taps->h_taps == 0) { if (dc_fixpt_ceil(scl_data->ratios.horz) > 1) scl_data->taps.h_taps = min(2 * dc_fixpt_ceil(scl_data->ratios.horz), 8); else scl_data->taps.h_taps = 4; } else scl_data->taps.h_taps = in_taps->h_taps; if (in_taps->v_taps == 0) { if (dc_fixpt_ceil(scl_data->ratios.vert) > 1) scl_data->taps.v_taps = min(dc_fixpt_ceil(dc_fixpt_mul_int(scl_data->ratios.vert, 2)), 8); else scl_data->taps.v_taps = 4; } else scl_data->taps.v_taps = in_taps->v_taps; if (in_taps->v_taps_c == 0) { if (dc_fixpt_ceil(scl_data->ratios.vert_c) > 1) scl_data->taps.v_taps_c = min(dc_fixpt_ceil(dc_fixpt_mul_int(scl_data->ratios.vert_c, 2)), 8); else scl_data->taps.v_taps_c = 4; } else scl_data->taps.v_taps_c = in_taps->v_taps_c; if (in_taps->h_taps_c == 0) { if (dc_fixpt_ceil(scl_data->ratios.horz_c) > 1) scl_data->taps.h_taps_c = min(2 * dc_fixpt_ceil(scl_data->ratios.horz_c), 8); else scl_data->taps.h_taps_c = 4; } else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1) /* Only 1 and even h_taps_c are supported by hw */ scl_data->taps.h_taps_c = in_taps->h_taps_c - 1; else scl_data->taps.h_taps_c = in_taps->h_taps_c; /*Ensure we can support the requested number of vtaps*/ min_taps_y = dc_fixpt_ceil(scl_data->ratios.vert); min_taps_c = dc_fixpt_ceil(scl_data->ratios.vert_c); /* Use LB_MEMORY_CONFIG_3 for 4:2:0 */ if ((scl_data->format == PIXEL_FORMAT_420BPP8) || (scl_data->format == PIXEL_FORMAT_420BPP10)) lb_config = LB_MEMORY_CONFIG_3; else lb_config = LB_MEMORY_CONFIG_0; dpp->caps->dscl_calc_lb_num_partitions( scl_data, lb_config, &num_part_y, &num_part_c); /* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */ if (dc_fixpt_ceil(scl_data->ratios.vert) > 2) max_taps_y = num_part_y - (dc_fixpt_ceil(scl_data->ratios.vert) - 2); else max_taps_y = num_part_y; if (dc_fixpt_ceil(scl_data->ratios.vert_c) > 2) max_taps_c = num_part_c - (dc_fixpt_ceil(scl_data->ratios.vert_c) - 2); else max_taps_c = num_part_c; if (max_taps_y < min_taps_y) return false; else if (max_taps_c < min_taps_c) return false; if (scl_data->taps.v_taps > max_taps_y) scl_data->taps.v_taps = max_taps_y; if (scl_data->taps.v_taps_c > max_taps_c) scl_data->taps.v_taps_c = max_taps_c; if (!dpp->ctx->dc->debug.always_scale) { if (IDENTITY_RATIO(scl_data->ratios.horz)) scl_data->taps.h_taps = 1; if (IDENTITY_RATIO(scl_data->ratios.vert)) scl_data->taps.v_taps = 1; if (IDENTITY_RATIO(scl_data->ratios.horz_c)) scl_data->taps.h_taps_c = 1; if (IDENTITY_RATIO(scl_data->ratios.vert_c)) scl_data->taps.v_taps_c = 1; } return true; } static void dpp3_deferred_update(struct dpp *dpp_base) { int bypass_state; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (dpp_base->deferred_reg_writes.bits.disable_dscl) { REG_UPDATE(DSCL_MEM_PWR_CTRL, LUT_MEM_PWR_FORCE, 3); dpp_base->deferred_reg_writes.bits.disable_dscl = false; } if (dpp_base->deferred_reg_writes.bits.disable_gamcor) { REG_GET(CM_GAMCOR_CONTROL, CM_GAMCOR_MODE_CURRENT, &bypass_state); if (bypass_state == 0) { // only program if bypass was latched REG_UPDATE(CM_MEM_PWR_CTRL, GAMCOR_MEM_PWR_FORCE, 3); } else ASSERT(0); // LUT select was updated again before vupdate dpp_base->deferred_reg_writes.bits.disable_gamcor = false; } if (dpp_base->deferred_reg_writes.bits.disable_blnd_lut) { REG_GET(CM_BLNDGAM_CONTROL, CM_BLNDGAM_MODE_CURRENT, &bypass_state); if (bypass_state == 0) { // only program if bypass was latched REG_UPDATE(CM_MEM_PWR_CTRL, BLNDGAM_MEM_PWR_FORCE, 3); } else ASSERT(0); // LUT select was updated again before vupdate dpp_base->deferred_reg_writes.bits.disable_blnd_lut = false; } if (dpp_base->deferred_reg_writes.bits.disable_3dlut) { REG_GET(CM_3DLUT_MODE, CM_3DLUT_MODE_CURRENT, &bypass_state); if (bypass_state == 0) { // only program if bypass was latched REG_UPDATE(CM_MEM_PWR_CTRL2, HDR3DLUT_MEM_PWR_FORCE, 3); } else ASSERT(0); // LUT select was updated again before vupdate dpp_base->deferred_reg_writes.bits.disable_3dlut = false; } if (dpp_base->deferred_reg_writes.bits.disable_shaper) { REG_GET(CM_SHAPER_CONTROL, CM_SHAPER_MODE_CURRENT, &bypass_state); if (bypass_state == 0) { // only program if bypass was latched REG_UPDATE(CM_MEM_PWR_CTRL2, SHAPER_MEM_PWR_FORCE, 3); } else ASSERT(0); // LUT select was updated again before vupdate dpp_base->deferred_reg_writes.bits.disable_shaper = false; } } static void dpp3_power_on_blnd_lut( struct dpp *dpp_base, bool power_on) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) { if (power_on) { REG_UPDATE(CM_MEM_PWR_CTRL, BLNDGAM_MEM_PWR_FORCE, 0); REG_WAIT(CM_MEM_PWR_STATUS, BLNDGAM_MEM_PWR_STATE, 0, 1, 5); } else { dpp_base->ctx->dc->optimized_required = true; dpp_base->deferred_reg_writes.bits.disable_blnd_lut = true; } } else { REG_SET(CM_MEM_PWR_CTRL, 0, BLNDGAM_MEM_PWR_FORCE, power_on == true ? 0 : 1); } } static void dpp3_power_on_hdr3dlut( struct dpp *dpp_base, bool power_on) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) { if (power_on) { REG_UPDATE(CM_MEM_PWR_CTRL2, HDR3DLUT_MEM_PWR_FORCE, 0); REG_WAIT(CM_MEM_PWR_STATUS2, HDR3DLUT_MEM_PWR_STATE, 0, 1, 5); } else { dpp_base->ctx->dc->optimized_required = true; dpp_base->deferred_reg_writes.bits.disable_3dlut = true; } } } static void dpp3_power_on_shaper( struct dpp *dpp_base, bool power_on) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) { if (power_on) { REG_UPDATE(CM_MEM_PWR_CTRL2, SHAPER_MEM_PWR_FORCE, 0); REG_WAIT(CM_MEM_PWR_STATUS2, SHAPER_MEM_PWR_STATE, 0, 1, 5); } else { dpp_base->ctx->dc->optimized_required = true; dpp_base->deferred_reg_writes.bits.disable_shaper = true; } } } static void dpp3_configure_blnd_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE_2(CM_BLNDGAM_LUT_CONTROL, CM_BLNDGAM_LUT_WRITE_COLOR_MASK, 7, CM_BLNDGAM_LUT_HOST_SEL, is_ram_a == true ? 0 : 1); REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0); } static void dpp3_program_blnd_pwl( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg; uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg; uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg; if (is_rgb_equal(rgb, num)) { for (i = 0 ; i < num; i++) REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, last_base_value_red); } else { REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0); REG_UPDATE(CM_BLNDGAM_LUT_CONTROL, CM_BLNDGAM_LUT_WRITE_COLOR_MASK, 4); for (i = 0 ; i < num; i++) REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, last_base_value_red); REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0); REG_UPDATE(CM_BLNDGAM_LUT_CONTROL, CM_BLNDGAM_LUT_WRITE_COLOR_MASK, 2); for (i = 0 ; i < num; i++) REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, last_base_value_green); REG_SET(CM_BLNDGAM_LUT_INDEX, 0, CM_BLNDGAM_LUT_INDEX, 0); REG_UPDATE(CM_BLNDGAM_LUT_CONTROL, CM_BLNDGAM_LUT_WRITE_COLOR_MASK, 1); for (i = 0 ; i < num; i++) REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_BLNDGAM_LUT_DATA, 0, CM_BLNDGAM_LUT_DATA, last_base_value_blue); } } static void dcn3_dpp_cm_get_reg_field( struct dcn3_dpp *dpp, struct dcn3_xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_BLNDGAM_RAMA_EXP_REGION_START_SEGMENT_B; } /*program blnd lut RAM A*/ static void dpp3_program_blnd_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); struct dcn3_xfer_func_reg gam_regs; dcn3_dpp_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMA_START_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMA_START_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMA_START_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_BLNDGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_BLNDGAM_RAMA_REGION_32_33); cm_helper_program_gamcor_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program blnd lut RAM B*/ static void dpp3_program_blnd_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); struct dcn3_xfer_func_reg gam_regs; dcn3_dpp_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_BLNDGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_BLNDGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_BLNDGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_BLNDGAM_RAMB_START_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_BLNDGAM_RAMB_START_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_BLNDGAM_RAMB_START_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_BLNDGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_BLNDGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_BLNDGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_BLNDGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_BLNDGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_BLNDGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_BLNDGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_BLNDGAM_RAMB_REGION_32_33); cm_helper_program_gamcor_xfer_func(dpp->base.ctx, params, &gam_regs); } static enum dc_lut_mode dpp3_get_blndgam_current(struct dpp *dpp_base) { enum dc_lut_mode mode; uint32_t mode_current = 0; uint32_t in_use = 0; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_GET(CM_BLNDGAM_CONTROL, CM_BLNDGAM_MODE_CURRENT, &mode_current); REG_GET(CM_BLNDGAM_CONTROL, CM_BLNDGAM_SELECT_CURRENT, &in_use); switch (mode_current) { case 0: case 1: mode = LUT_BYPASS; break; case 2: if (in_use == 0) mode = LUT_RAM_A; else mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } static bool dpp3_program_blnd_lut(struct dpp *dpp_base, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (params == NULL) { REG_SET(CM_BLNDGAM_CONTROL, 0, CM_BLNDGAM_MODE, 0); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_blnd_lut(dpp_base, false); return false; } current_mode = dpp3_get_blndgam_current(dpp_base); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_B) next_mode = LUT_RAM_A; else next_mode = LUT_RAM_B; dpp3_power_on_blnd_lut(dpp_base, true); dpp3_configure_blnd_lut(dpp_base, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) dpp3_program_blnd_luta_settings(dpp_base, params); else dpp3_program_blnd_lutb_settings(dpp_base, params); dpp3_program_blnd_pwl( dpp_base, params->rgb_resulted, params->hw_points_num); REG_UPDATE_2(CM_BLNDGAM_CONTROL, CM_BLNDGAM_MODE, 2, CM_BLNDGAM_SELECT, next_mode == LUT_RAM_A ? 0 : 1); return true; } static void dpp3_program_shaper_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i, red, green, blue; uint32_t red_delta, green_delta, blue_delta; uint32_t red_value, green_value, blue_value; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); for (i = 0 ; i < num; i++) { red = rgb[i].red_reg; green = rgb[i].green_reg; blue = rgb[i].blue_reg; red_delta = rgb[i].delta_red_reg; green_delta = rgb[i].delta_green_reg; blue_delta = rgb[i].delta_blue_reg; red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff); green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff); blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, red_value); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, green_value); REG_SET(CM_SHAPER_LUT_DATA, 0, CM_SHAPER_LUT_DATA, blue_value); } } static enum dc_lut_mode dpp3_get_shaper_current(struct dpp *dpp_base) { enum dc_lut_mode mode; uint32_t state_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_GET(CM_SHAPER_CONTROL, CM_SHAPER_MODE_CURRENT, &state_mode); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } static void dpp3_configure_shaper_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_SHAPER_LUT_WRITE_EN_MASK, CM_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_SHAPER_LUT_INDEX, 0, CM_SHAPER_LUT_INDEX, 0); } /*program shaper RAM A*/ static void dpp3_program_shaper_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_B, 0, CM_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_G, 0, CM_SHAPER_RAMA_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_SHAPER_RAMA_START_CNTL_R, 0, CM_SHAPER_RAMA_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_START_SEGMENT_R, 0); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_B, 0, CM_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_G, 0, CM_SHAPER_RAMA_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y); REG_SET_2(CM_SHAPER_RAMA_END_CNTL_R, 0, CM_SHAPER_RAMA_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x, CM_SHAPER_RAMA_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(CM_SHAPER_RAMA_REGION_0_1, 0, CM_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_2_3, 0, CM_SHAPER_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_4_5, 0, CM_SHAPER_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_6_7, 0, CM_SHAPER_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_8_9, 0, CM_SHAPER_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_10_11, 0, CM_SHAPER_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_12_13, 0, CM_SHAPER_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_14_15, 0, CM_SHAPER_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_16_17, 0, CM_SHAPER_RAMA_EXP_REGION16_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION17_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_18_19, 0, CM_SHAPER_RAMA_EXP_REGION18_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION19_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_20_21, 0, CM_SHAPER_RAMA_EXP_REGION20_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION21_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_22_23, 0, CM_SHAPER_RAMA_EXP_REGION22_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION23_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_24_25, 0, CM_SHAPER_RAMA_EXP_REGION24_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION25_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_26_27, 0, CM_SHAPER_RAMA_EXP_REGION26_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION27_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_28_29, 0, CM_SHAPER_RAMA_EXP_REGION28_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION29_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_30_31, 0, CM_SHAPER_RAMA_EXP_REGION30_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION31_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMA_REGION_32_33, 0, CM_SHAPER_RAMA_EXP_REGION32_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMA_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMA_EXP_REGION33_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMA_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num); } /*program shaper RAM B*/ static void dpp3_program_shaper_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_B, 0, CM_SHAPER_RAMB_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_G, 0, CM_SHAPER_RAMB_EXP_REGION_START_G, params->corner_points[0].green.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_SHAPER_RAMB_START_CNTL_R, 0, CM_SHAPER_RAMB_EXP_REGION_START_R, params->corner_points[0].red.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_START_SEGMENT_R, 0); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_B, 0, CM_SHAPER_RAMB_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_G, 0, CM_SHAPER_RAMB_EXP_REGION_END_G, params->corner_points[1].green.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_G, params->corner_points[1].green.custom_float_y); REG_SET_2(CM_SHAPER_RAMB_END_CNTL_R, 0, CM_SHAPER_RAMB_EXP_REGION_END_R, params->corner_points[1].red.custom_float_x, CM_SHAPER_RAMB_EXP_REGION_END_BASE_R, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(CM_SHAPER_RAMB_REGION_0_1, 0, CM_SHAPER_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_2_3, 0, CM_SHAPER_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_4_5, 0, CM_SHAPER_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_6_7, 0, CM_SHAPER_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_8_9, 0, CM_SHAPER_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_10_11, 0, CM_SHAPER_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_12_13, 0, CM_SHAPER_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_14_15, 0, CM_SHAPER_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_16_17, 0, CM_SHAPER_RAMB_EXP_REGION16_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION17_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_18_19, 0, CM_SHAPER_RAMB_EXP_REGION18_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION19_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_20_21, 0, CM_SHAPER_RAMB_EXP_REGION20_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION21_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_22_23, 0, CM_SHAPER_RAMB_EXP_REGION22_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION23_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_24_25, 0, CM_SHAPER_RAMB_EXP_REGION24_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION25_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_26_27, 0, CM_SHAPER_RAMB_EXP_REGION26_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION27_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_28_29, 0, CM_SHAPER_RAMB_EXP_REGION28_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION29_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_30_31, 0, CM_SHAPER_RAMB_EXP_REGION30_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION31_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_SHAPER_RAMB_REGION_32_33, 0, CM_SHAPER_RAMB_EXP_REGION32_LUT_OFFSET, curve[0].offset, CM_SHAPER_RAMB_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num, CM_SHAPER_RAMB_EXP_REGION33_LUT_OFFSET, curve[1].offset, CM_SHAPER_RAMB_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num); } static bool dpp3_program_shaper(struct dpp *dpp_base, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (params == NULL) { REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, 0); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_shaper(dpp_base, false); return false; } if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_shaper(dpp_base, true); current_mode = dpp3_get_shaper_current(dpp_base); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; dpp3_configure_shaper_lut(dpp_base, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) dpp3_program_shaper_luta_settings(dpp_base, params); else dpp3_program_shaper_lutb_settings(dpp_base, params); dpp3_program_shaper_lut( dpp_base, params->rgb_resulted, params->hw_points_num); REG_SET(CM_SHAPER_CONTROL, 0, CM_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2); return true; } static enum dc_lut_mode get3dlut_config( struct dpp *dpp_base, bool *is_17x17x17, bool *is_12bits_color_channel) { uint32_t i_mode, i_enable_10bits, lut_size; enum dc_lut_mode mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_GET(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_30BIT_EN, &i_enable_10bits); REG_GET(CM_3DLUT_MODE, CM_3DLUT_MODE_CURRENT, &i_mode); switch (i_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } if (i_enable_10bits > 0) *is_12bits_color_channel = false; else *is_12bits_color_channel = true; REG_GET(CM_3DLUT_MODE, CM_3DLUT_SIZE, &lut_size); if (lut_size == 0) *is_17x17x17 = true; else *is_17x17x17 = false; return mode; } /* * select ramA or ramB, or bypass * select color channel size 10 or 12 bits * select 3dlut size 17x17x17 or 9x9x9 */ static void dpp3_set_3dlut_mode( struct dpp *dpp_base, enum dc_lut_mode mode, bool is_color_channel_12bits, bool is_lut_size17x17x17) { uint32_t lut_mode; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); if (mode == LUT_BYPASS) lut_mode = 0; else if (mode == LUT_RAM_A) lut_mode = 1; else lut_mode = 2; REG_UPDATE_2(CM_3DLUT_MODE, CM_3DLUT_MODE, lut_mode, CM_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1); } static void dpp3_select_3dlut_ram( struct dpp *dpp_base, enum dc_lut_mode mode, bool is_color_channel_12bits) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE_2(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1, CM_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1); } static void dpp3_set3dlut_ram12( struct dpp *dpp_base, const struct dc_rgb *lut, uint32_t entries) { uint32_t i, red, green, blue, red1, green1, blue1; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); for (i = 0 ; i < entries; i += 2) { red = lut[i].red<<4; green = lut[i].green<<4; blue = lut[i].blue<<4; red1 = lut[i+1].red<<4; green1 = lut[i+1].green<<4; blue1 = lut[i+1].blue<<4; REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, red, CM_3DLUT_DATA1, red1); REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, green, CM_3DLUT_DATA1, green1); REG_SET_2(CM_3DLUT_DATA, 0, CM_3DLUT_DATA0, blue, CM_3DLUT_DATA1, blue1); } } /* * load selected lut with 10 bits color channels */ static void dpp3_set3dlut_ram10( struct dpp *dpp_base, const struct dc_rgb *lut, uint32_t entries) { uint32_t i, red, green, blue, value; struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); for (i = 0; i < entries; i++) { red = lut[i].red; green = lut[i].green; blue = lut[i].blue; value = (red<<20) | (green<<10) | blue; REG_SET(CM_3DLUT_DATA_30BIT, 0, CM_3DLUT_DATA_30BIT, value); } } static void dpp3_select_3dlut_ram_mask( struct dpp *dpp_base, uint32_t ram_selection_mask) { struct dcn3_dpp *dpp = TO_DCN30_DPP(dpp_base); REG_UPDATE(CM_3DLUT_READ_WRITE_CONTROL, CM_3DLUT_WRITE_EN_MASK, ram_selection_mask); REG_SET(CM_3DLUT_INDEX, 0, CM_3DLUT_INDEX, 0); } static bool dpp3_program_3dlut(struct dpp *dpp_base, const struct tetrahedral_params *params) { enum dc_lut_mode mode; bool is_17x17x17; bool is_12bits_color_channel; const struct dc_rgb *lut0; const struct dc_rgb *lut1; const struct dc_rgb *lut2; const struct dc_rgb *lut3; int lut_size0; int lut_size; if (params == NULL) { dpp3_set_3dlut_mode(dpp_base, LUT_BYPASS, false, false); if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_hdr3dlut(dpp_base, false); return false; } if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.cm) dpp3_power_on_hdr3dlut(dpp_base, true); mode = get3dlut_config(dpp_base, &is_17x17x17, &is_12bits_color_channel); if (mode == LUT_BYPASS || mode == LUT_RAM_B) mode = LUT_RAM_A; else mode = LUT_RAM_B; is_17x17x17 = !params->use_tetrahedral_9; is_12bits_color_channel = params->use_12bits; if (is_17x17x17) { lut0 = params->tetrahedral_17.lut0; lut1 = params->tetrahedral_17.lut1; lut2 = params->tetrahedral_17.lut2; lut3 = params->tetrahedral_17.lut3; lut_size0 = sizeof(params->tetrahedral_17.lut0)/ sizeof(params->tetrahedral_17.lut0[0]); lut_size = sizeof(params->tetrahedral_17.lut1)/ sizeof(params->tetrahedral_17.lut1[0]); } else { lut0 = params->tetrahedral_9.lut0; lut1 = params->tetrahedral_9.lut1; lut2 = params->tetrahedral_9.lut2; lut3 = params->tetrahedral_9.lut3; lut_size0 = sizeof(params->tetrahedral_9.lut0)/ sizeof(params->tetrahedral_9.lut0[0]); lut_size = sizeof(params->tetrahedral_9.lut1)/ sizeof(params->tetrahedral_9.lut1[0]); } dpp3_select_3dlut_ram(dpp_base, mode, is_12bits_color_channel); dpp3_select_3dlut_ram_mask(dpp_base, 0x1); if (is_12bits_color_channel) dpp3_set3dlut_ram12(dpp_base, lut0, lut_size0); else dpp3_set3dlut_ram10(dpp_base, lut0, lut_size0); dpp3_select_3dlut_ram_mask(dpp_base, 0x2); if (is_12bits_color_channel) dpp3_set3dlut_ram12(dpp_base, lut1, lut_size); else dpp3_set3dlut_ram10(dpp_base, lut1, lut_size); dpp3_select_3dlut_ram_mask(dpp_base, 0x4); if (is_12bits_color_channel) dpp3_set3dlut_ram12(dpp_base, lut2, lut_size); else dpp3_set3dlut_ram10(dpp_base, lut2, lut_size); dpp3_select_3dlut_ram_mask(dpp_base, 0x8); if (is_12bits_color_channel) dpp3_set3dlut_ram12(dpp_base, lut3, lut_size); else dpp3_set3dlut_ram10(dpp_base, lut3, lut_size); dpp3_set_3dlut_mode(dpp_base, mode, is_12bits_color_channel, is_17x17x17); return true; } static struct dpp_funcs dcn30_dpp_funcs = { .dpp_program_gamcor_lut = dpp3_program_gamcor_lut, .dpp_read_state = dpp30_read_state, .dpp_reset = dpp_reset, .dpp_set_scaler = dpp1_dscl_set_scaler_manual_scale, .dpp_get_optimal_number_of_taps = dpp3_get_optimal_number_of_taps, .dpp_set_gamut_remap = dpp3_cm_set_gamut_remap, .dpp_set_csc_adjustment = NULL, .dpp_set_csc_default = NULL, .dpp_program_regamma_pwl = NULL, .dpp_set_pre_degam = dpp3_set_pre_degam, .dpp_program_input_lut = NULL, .dpp_full_bypass = dpp1_full_bypass, .dpp_setup = dpp3_cnv_setup, .dpp_program_degamma_pwl = NULL, .dpp_program_cm_dealpha = dpp3_program_cm_dealpha, .dpp_program_cm_bias = dpp3_program_cm_bias, .dpp_program_blnd_lut = dpp3_program_blnd_lut, .dpp_program_shaper_lut = dpp3_program_shaper, .dpp_program_3dlut = dpp3_program_3dlut, .dpp_deferred_update = dpp3_deferred_update, .dpp_program_bias_and_scale = NULL, .dpp_cnv_set_alpha_keyer = dpp2_cnv_set_alpha_keyer, .set_cursor_attributes = dpp3_set_cursor_attributes, .set_cursor_position = dpp1_set_cursor_position, .set_optional_cursor_attributes = dpp1_cnv_set_optional_cursor_attributes, .dpp_dppclk_control = dpp1_dppclk_control, .dpp_set_hdr_multiplier = dpp3_set_hdr_multiplier, .dpp_get_gamut_remap = dpp3_cm_get_gamut_remap, }; static struct dpp_caps dcn30_dpp_cap = { .dscl_data_proc_format = DSCL_DATA_PRCESSING_FLOAT_FORMAT, .dscl_calc_lb_num_partitions = dscl2_calc_lb_num_partitions, }; bool dpp3_construct( struct dcn3_dpp *dpp, struct dc_context *ctx, uint32_t inst, const struct dcn3_dpp_registers *tf_regs, const struct dcn3_dpp_shift *tf_shift, const struct dcn3_dpp_mask *tf_mask) { dpp->base.ctx = ctx; dpp->base.inst = inst; dpp->base.funcs = &dcn30_dpp_funcs; dpp->base.caps = &dcn30_dpp_cap; dpp->tf_regs = tf_regs; dpp->tf_shift = tf_shift; dpp->tf_mask = tf_mask; return true; }