/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "core_types.h" #include "reg_helper.h" #include "dcn10/dcn10_dpp.h" #include "basics/conversion.h" #include "dcn10/dcn10_cm_common.h" #define NUM_PHASES 64 #define HORZ_MAX_TAPS 8 #define VERT_MAX_TAPS 8 #define BLACK_OFFSET_RGB_Y 0x0 #define BLACK_OFFSET_CBCR 0x8000 #define REG(reg)\ dpp->tf_regs->reg #define CTX \ dpp->base.ctx #undef FN #define FN(reg_name, field_name) \ dpp->tf_shift->field_name, dpp->tf_mask->field_name #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) enum dcn10_coef_filter_type_sel { SCL_COEF_LUMA_VERT_FILTER = 0, SCL_COEF_LUMA_HORZ_FILTER = 1, SCL_COEF_CHROMA_VERT_FILTER = 2, SCL_COEF_CHROMA_HORZ_FILTER = 3, SCL_COEF_ALPHA_VERT_FILTER = 4, SCL_COEF_ALPHA_HORZ_FILTER = 5 }; enum dscl_autocal_mode { AUTOCAL_MODE_OFF = 0, /* Autocal calculate the scaling ratio and initial phase and the * DSCL_MODE_SEL must be set to 1 */ AUTOCAL_MODE_AUTOSCALE = 1, /* Autocal perform auto centering without replication and the * DSCL_MODE_SEL must be set to 0 */ AUTOCAL_MODE_AUTOCENTER = 2, /* Autocal perform auto centering and auto replication and the * DSCL_MODE_SEL must be set to 0 */ AUTOCAL_MODE_AUTOREPLICATE = 3 }; enum dscl_mode_sel { DSCL_MODE_SCALING_444_BYPASS = 0, DSCL_MODE_SCALING_444_RGB_ENABLE = 1, DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2, DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3, DSCL_MODE_SCALING_420_LUMA_BYPASS = 4, DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5, DSCL_MODE_DSCL_BYPASS = 6 }; static void program_gamut_remap( struct dcn10_dpp *dpp, const uint16_t *regval, enum gamut_remap_select select) { uint16_t selection = 0; struct color_matrices_reg gam_regs; if (regval == NULL || select == GAMUT_REMAP_BYPASS) { REG_SET(CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, 0); return; } switch (select) { case GAMUT_REMAP_COEFF: selection = 1; break; case GAMUT_REMAP_COMA_COEFF: selection = 2; break; case GAMUT_REMAP_COMB_COEFF: selection = 3; break; default: break; } gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } else { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); } REG_SET( CM_GAMUT_REMAP_CONTROL, 0, CM_GAMUT_REMAP_MODE, selection); } void dpp1_cm_set_gamut_remap( struct dpp *dpp_base, const struct dpp_grph_csc_adjustment *adjust) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); int i = 0; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) /* Bypass if type is bypass or hw */ program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS); else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix( arr_reg_val, arr_matrix, 12); program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF); } } static void read_gamut_remap(struct dcn10_dpp *dpp, uint16_t *regval, enum gamut_remap_select *select) { struct color_matrices_reg gam_regs; uint32_t selection; REG_GET(CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE, &selection); *select = selection; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; if (*select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (*select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } else if (*select == GAMUT_REMAP_COMB_COEFF) { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); cm_helper_read_color_matrices( dpp->base.ctx, regval, &gam_regs); } } void dpp1_cm_get_gamut_remap(struct dpp *dpp_base, struct dpp_grph_csc_adjustment *adjust) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); uint16_t arr_reg_val[12] = {0}; enum gamut_remap_select select; read_gamut_remap(dpp, arr_reg_val, &select); if (select == GAMUT_REMAP_BYPASS) { adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; return; } adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; convert_hw_matrix(adjust->temperature_matrix, arr_reg_val, ARRAY_SIZE(arr_reg_val)); } static void dpp1_cm_program_color_matrix( struct dcn10_dpp *dpp, const uint16_t *regval) { uint32_t ocsc_mode; uint32_t cur_mode; struct color_matrices_reg gam_regs; if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } /* determine which CSC matrix (ocsc or comb) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ REG_SET(CM_TEST_DEBUG_INDEX, 0, CM_TEST_DEBUG_INDEX, 9); REG_GET(CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode); if (cur_mode != 4) ocsc_mode = 4; else ocsc_mode = 5; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12; if (ocsc_mode == 4) { gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12); gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode); } void dpp1_cm_set_output_csc_default( struct dpp *dpp_base, enum dc_color_space colorspace) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); const uint16_t *regval = NULL; int arr_size; regval = find_color_matrix(colorspace, &arr_size); if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } dpp1_cm_program_color_matrix(dpp, regval); } static void dpp1_cm_get_reg_field( struct dcn10_dpp *dpp, struct xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; } static void dpp1_cm_get_degamma_reg_field( struct dcn10_dpp *dpp, struct xfer_func_reg *reg) { reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B; reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B; reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B; reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; } void dpp1_cm_set_output_csc_adjustment( struct dpp *dpp_base, const uint16_t *regval) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); dpp1_cm_program_color_matrix(dpp, regval); } void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base, bool power_on) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET(CM_MEM_PWR_CTRL, 0, RGAM_MEM_PWR_FORCE, power_on == true ? 0:1); } void dpp1_cm_program_regamma_lut(struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SEQ_START(); for (i = 0 ; i < num; i++) { REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void dpp1_cm_configure_regamma_lut( struct dpp *dpp_base, bool is_ram_a) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0); } /*program re gamma RAM A*/ void dpp1_cm_program_regamma_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program re gamma RAM B*/ void dpp1_cm_program_regamma_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } void dpp1_program_input_csc( struct dpp *dpp_base, enum dc_color_space color_space, enum dcn10_input_csc_select input_select, const struct out_csc_color_matrix *tbl_entry) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); int i; int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix); const uint16_t *regval = NULL; uint32_t cur_select = 0; enum dcn10_input_csc_select select; struct color_matrices_reg gam_regs; if (input_select == INPUT_CSC_SELECT_BYPASS) { REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0); return; } if (tbl_entry == NULL) { for (i = 0; i < arr_size; i++) if (dpp_input_csc_matrix[i].color_space == color_space) { regval = dpp_input_csc_matrix[i].regval; break; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } } else { regval = tbl_entry->regval; } /* determine which CSC matrix (icsc or coma) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ REG_SET(CM_TEST_DEBUG_INDEX, 0, CM_TEST_DEBUG_INDEX, 9); REG_GET(CM_TEST_DEBUG_DATA, CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select); if (cur_select != INPUT_CSC_SELECT_ICSC) select = INPUT_CSC_SELECT_ICSC; else select = INPUT_CSC_SELECT_COMA; gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11; gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11; gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12; gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12; if (select == INPUT_CSC_SELECT_ICSC) { gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12); gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34); } else { gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); } cm_helper_program_color_matrices( dpp->base.ctx, regval, &gam_regs); REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, select); } //keep here for now, decide multi dce support later void dpp1_program_bias_and_scale( struct dpp *dpp_base, struct dc_bias_and_scale *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET_2(CM_BNS_VALUES_R, 0, CM_BNS_SCALE_R, params->scale_red, CM_BNS_BIAS_R, params->bias_red); REG_SET_2(CM_BNS_VALUES_G, 0, CM_BNS_SCALE_G, params->scale_green, CM_BNS_BIAS_G, params->bias_green); REG_SET_2(CM_BNS_VALUES_B, 0, CM_BNS_SCALE_B, params->scale_blue, CM_BNS_BIAS_B, params->bias_blue); } /*program de gamma RAM B*/ void dpp1_program_degamma_lutb_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R); gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1); gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } /*program de gamma RAM A*/ void dpp1_program_degamma_luta_settings( struct dpp *dpp_base, const struct pwl_params *params) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); struct xfer_func_reg gam_regs; dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B); gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G); gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R); gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B); gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G); gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R); gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B); gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B); gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G); gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G); gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R); gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R); gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1); gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15); cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); } void dpp1_power_on_degamma_lut( struct dpp *dpp_base, bool power_on) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, power_on ? 0:1); } static void dpp1_enable_cm_block( struct dpp *dpp_base) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8); REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0); } void dpp1_set_degamma( struct dpp *dpp_base, enum ipp_degamma_mode mode) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); dpp1_enable_cm_block(dpp_base); switch (mode) { case IPP_DEGAMMA_MODE_BYPASS: /* Setting de gamma bypass for now */ REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0); break; case IPP_DEGAMMA_MODE_HW_sRGB: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1); break; case IPP_DEGAMMA_MODE_HW_xvYCC: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2); break; case IPP_DEGAMMA_MODE_USER_PWL: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); break; default: BREAK_TO_DEBUGGER(); break; } REG_SEQ_SUBMIT(); REG_SEQ_WAIT_DONE(); } void dpp1_degamma_ram_select( struct dpp *dpp_base, bool use_ram_a) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); if (use_ram_a) REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); else REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4); } static bool dpp1_degamma_ram_inuse( struct dpp *dpp_base, bool *ram_a_inuse) { bool ret = false; uint32_t status_reg = 0; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); if (status_reg == 9) { *ram_a_inuse = true; ret = true; } else if (status_reg == 10) { *ram_a_inuse = false; ret = true; } return ret; } void dpp1_program_degamma_lut( struct dpp *dpp_base, const struct pwl_result_data *rgb, uint32_t num, bool is_ram_a) { uint32_t i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0); for (i = 0 ; i < num; i++) { REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void dpp1_set_degamma_pwl(struct dpp *dpp_base, const struct pwl_params *params) { bool is_ram_a = true; dpp1_power_on_degamma_lut(dpp_base, true); dpp1_enable_cm_block(dpp_base); dpp1_degamma_ram_inuse(dpp_base, &is_ram_a); if (is_ram_a == true) dpp1_program_degamma_lutb_settings(dpp_base, params); else dpp1_program_degamma_luta_settings(dpp_base, params); dpp1_program_degamma_lut(dpp_base, params->rgb_resulted, params->hw_points_num, !is_ram_a); dpp1_degamma_ram_select(dpp_base, !is_ram_a); } void dpp1_full_bypass(struct dpp *dpp_base) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); /* Input pixel format: ARGB8888 */ REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0, CNVC_SURFACE_PIXEL_FORMAT, 0x8); /* Zero expansion */ REG_SET_3(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, FORMAT_CONTROL__ALPHA_EN, 0, FORMAT_EXPANSION_MODE, 0); /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */ if (dpp->tf_mask->CM_BYPASS_EN) REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1); else REG_SET(CM_CONTROL, 0, CM_BYPASS, 1); /* Setting degamma bypass for now */ REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0); } static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base, bool *ram_a_inuse) { bool in_use = false; uint32_t status_reg = 0; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB if (status_reg == 1 || status_reg == 3 || status_reg == 4) { *ram_a_inuse = true; in_use = true; // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) { *ram_a_inuse = false; in_use = true; } return in_use; } /* * Input gamma LUT currently supports 256 values only. This means input color * can have a maximum of 8 bits per channel (= 256 possible values) in order to * have a one-to-one mapping with the LUT. Truncation will occur with color * values greater than 8 bits. * * In the future, this function should support additional input gamma methods, * such as piecewise linear mapping, and input gamma bypass. */ void dpp1_program_input_lut( struct dpp *dpp_base, const struct dc_gamma *gamma) { int i; struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); bool rama_occupied = false; uint32_t ram_num; // Power on LUT memory. REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1); dpp1_enable_cm_block(dpp_base); // Determine whether to use RAM A or RAM B dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied); if (!rama_occupied) REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0); else REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1); // RW mode is 256-entry LUT REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0); // IGAM Input format should be 8 bits per channel. REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0); // Do not mask any R,G,B values REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7); // LUT-256, unsigned, integer, new u0.12 format REG_UPDATE_3( CM_IGAM_CONTROL, CM_IGAM_LUT_FORMAT_R, 3, CM_IGAM_LUT_FORMAT_G, 3, CM_IGAM_LUT_FORMAT_B, 3); // Start at index 0 of IGAM LUT REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0); for (i = 0; i < gamma->num_entries; i++) { REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.red[i])); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.green[i])); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, dc_fixpt_round( gamma->entries.blue[i])); } // Power off LUT memory REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0); // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2); REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num); } void dpp1_set_hdr_multiplier( struct dpp *dpp_base, uint32_t multiplier) { struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier); }