/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ // header file of functions being implemented #include "dcn32/dcn32_resource.h" #include "dcn20/dcn20_resource.h" #include "dml/dcn32/display_mode_vba_util_32.h" #include "dml/dcn32/dcn32_fpu.h" #include "dc_state_priv.h" static bool is_dual_plane(enum surface_pixel_format format) { return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA; } uint32_t dcn32_helper_calculate_mall_bytes_for_cursor( struct dc *dc, struct pipe_ctx *pipe_ctx, bool ignore_cursor_buf) { struct hubp *hubp = pipe_ctx->plane_res.hubp; uint32_t cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height; uint32_t cursor_mall_size_bytes = 0; switch (pipe_ctx->stream->cursor_attributes.color_format) { case CURSOR_MODE_MONO: cursor_size /= 2; break; case CURSOR_MODE_COLOR_1BIT_AND: case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA: case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA: cursor_size *= 4; break; case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED: case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED: cursor_size *= 8; break; } /* only count if cursor is enabled, and if additional allocation needed outside of the * DCN cursor buffer */ if (pipe_ctx->stream->cursor_position.enable && (ignore_cursor_buf || cursor_size > 16384)) { /* cursor_num_mblk = CEILING(num_cursors*cursor_width*cursor_width*cursor_Bpe/mblk_bytes, 1) * Note: add 1 mblk in case of cursor misalignment */ cursor_mall_size_bytes = ((cursor_size + DCN3_2_MALL_MBLK_SIZE_BYTES - 1) / DCN3_2_MALL_MBLK_SIZE_BYTES + 1) * DCN3_2_MALL_MBLK_SIZE_BYTES; } return cursor_mall_size_bytes; } /** * dcn32_helper_calculate_num_ways_for_subvp(): Calculate number of ways needed for SubVP * * Gets total allocation required for the phantom viewport calculated by DML in bytes and * converts to number of cache ways. * * @dc: current dc state * @context: new dc state * * Return: number of ways required for SubVP */ uint32_t dcn32_helper_calculate_num_ways_for_subvp( struct dc *dc, struct dc_state *context) { if (context->bw_ctx.bw.dcn.mall_subvp_size_bytes > 0) { if (dc->debug.force_subvp_num_ways) { return dc->debug.force_subvp_num_ways; } else if (dc->res_pool->funcs->calculate_mall_ways_from_bytes) { return dc->res_pool->funcs->calculate_mall_ways_from_bytes(dc, context->bw_ctx.bw.dcn.mall_subvp_size_bytes); } else { return 0; } } else { return 0; } } void dcn32_merge_pipes_for_subvp(struct dc *dc, struct dc_state *context) { uint32_t i; /* merge pipes if necessary */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // For now merge all pipes for SubVP since pipe split case isn't supported yet /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ if (pipe->prev_odm_pipe) { /*split off odm pipe*/ pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; if (pipe->next_odm_pipe) pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; pipe->bottom_pipe = NULL; pipe->next_odm_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; pipe->top_pipe = NULL; pipe->prev_odm_pipe = NULL; if (pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { struct pipe_ctx *top_pipe = pipe->top_pipe; struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; top_pipe->bottom_pipe = bottom_pipe; if (bottom_pipe) bottom_pipe->top_pipe = top_pipe; pipe->top_pipe = NULL; pipe->bottom_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); } } } bool dcn32_all_pipes_have_stream_and_plane(struct dc *dc, struct dc_state *context) { uint32_t i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (!pipe->plane_state) return false; } return true; } bool dcn32_subvp_in_use(struct dc *dc, struct dc_state *context) { uint32_t i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (dc_state_get_pipe_subvp_type(context, pipe) != SUBVP_NONE) return true; } return false; } bool dcn32_mpo_in_use(struct dc_state *context) { uint32_t i; for (i = 0; i < context->stream_count; i++) { if (context->stream_status[i].plane_count > 1) return true; } return false; } bool dcn32_any_surfaces_rotated(struct dc *dc, struct dc_state *context) { uint32_t i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && pipe->plane_state->rotation != ROTATION_ANGLE_0) return true; } return false; } bool dcn32_is_center_timing(struct pipe_ctx *pipe) { bool is_center_timing = false; if (pipe->stream) { if (pipe->stream->timing.v_addressable != pipe->stream->dst.height || pipe->stream->timing.v_addressable != pipe->stream->src.height) { is_center_timing = true; } } if (pipe->plane_state) { if (pipe->stream->timing.v_addressable != pipe->plane_state->dst_rect.height && pipe->stream->timing.v_addressable != pipe->plane_state->src_rect.height) { is_center_timing = true; } } return is_center_timing; } bool dcn32_is_psr_capable(struct pipe_ctx *pipe) { bool psr_capable = false; if (pipe->stream && pipe->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) { psr_capable = true; } return psr_capable; } static void override_det_for_subvp(struct dc *dc, struct dc_state *context, uint8_t pipe_segments[]) { uint32_t i; uint8_t fhd_count = 0; uint8_t subvp_high_refresh_count = 0; uint8_t stream_count = 0; // Do not override if a stream has multiple planes for (i = 0; i < context->stream_count; i++) { if (context->stream_status[i].plane_count > 1) return; if (dc_state_get_stream_subvp_type(context, context->streams[i]) != SUBVP_PHANTOM) stream_count++; } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && pipe_ctx->plane_state && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) { if (dcn32_allow_subvp_high_refresh_rate(dc, context, pipe_ctx)) { if (pipe_ctx->stream->timing.v_addressable == 1080 && pipe_ctx->stream->timing.h_addressable == 1920) { fhd_count++; } subvp_high_refresh_count++; } } } if (stream_count == 2 && subvp_high_refresh_count == 2 && fhd_count == 1) { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && pipe_ctx->plane_state && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) { if (pipe_ctx->stream->timing.v_addressable == 1080 && pipe_ctx->stream->timing.h_addressable == 1920) { if (pipe_segments[i] > 4) pipe_segments[i] = 4; } } } } } /** * dcn32_determine_det_override(): Determine DET allocation for each pipe * * This function determines how much DET to allocate for each pipe. The total number of * DET segments will be split equally among each of the streams, and after that the DET * segments per stream will be split equally among the planes for the given stream. * * If there is a plane that's driven by more than 1 pipe (i.e. pipe split), then the * number of DET for that given plane will be split among the pipes driving that plane. * * * High level algorithm: * 1. Split total DET among number of streams * 2. For each stream, split DET among the planes * 3. For each plane, check if there is a pipe split. If yes, split the DET allocation * among those pipes. * 4. Assign the DET override to the DML pipes. * * @dc: Current DC state * @context: New DC state to be programmed * @pipes: Array of DML pipes * * Return: void */ void dcn32_determine_det_override(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes) { uint32_t i, j, k; uint8_t pipe_plane_count, stream_segments, plane_segments, pipe_segments[MAX_PIPES] = {0}; uint8_t pipe_counted[MAX_PIPES] = {0}; uint8_t pipe_cnt = 0; struct dc_plane_state *current_plane = NULL; uint8_t stream_count = 0; for (i = 0; i < context->stream_count; i++) { /* Don't count SubVP streams for DET allocation */ if (dc_state_get_stream_subvp_type(context, context->streams[i]) != SUBVP_PHANTOM) stream_count++; } if (stream_count > 0) { stream_segments = 18 / stream_count; for (i = 0; i < context->stream_count; i++) { if (dc_state_get_stream_subvp_type(context, context->streams[i]) == SUBVP_PHANTOM) continue; if (context->stream_status[i].plane_count > 0) plane_segments = stream_segments / context->stream_status[i].plane_count; else plane_segments = stream_segments; for (j = 0; j < dc->res_pool->pipe_count; j++) { pipe_plane_count = 0; if (context->res_ctx.pipe_ctx[j].stream == context->streams[i] && pipe_counted[j] != 1) { /* Note: pipe_plane_count indicates the number of pipes to be used for a * given plane. e.g. pipe_plane_count = 1 means single pipe (i.e. not split), * pipe_plane_count = 2 means 2:1 split, etc. */ pipe_plane_count++; pipe_counted[j] = 1; current_plane = context->res_ctx.pipe_ctx[j].plane_state; for (k = 0; k < dc->res_pool->pipe_count; k++) { if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] && context->res_ctx.pipe_ctx[k].plane_state == current_plane) { pipe_plane_count++; pipe_counted[k] = 1; } } pipe_segments[j] = plane_segments / pipe_plane_count; for (k = 0; k < dc->res_pool->pipe_count; k++) { if (k != j && context->res_ctx.pipe_ctx[k].stream == context->streams[i] && context->res_ctx.pipe_ctx[k].plane_state == current_plane) { pipe_segments[k] = plane_segments / pipe_plane_count; } } } } } override_det_for_subvp(dc, context, pipe_segments); for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_cnt].pipe.src.det_size_override = pipe_segments[i] * DCN3_2_DET_SEG_SIZE; pipe_cnt++; } } else { for (i = 0; i < dc->res_pool->pipe_count; i++) pipes[i].pipe.src.det_size_override = 4 * DCN3_2_DET_SEG_SIZE; //DCN3_2_DEFAULT_DET_SIZE } } void dcn32_set_det_allocations(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; struct pipe_ctx *pipe = 0; bool disable_unbounded_requesting = dc->debug.disable_z9_mpc || dc->debug.disable_unbounded_requesting; for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!res_ctx->pipe_ctx[i].stream) continue; pipe = &res_ctx->pipe_ctx[i]; pipe_cnt++; } /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all * the DET available for each pipe). Use the DET override input to maintain our driver * policy. */ if (pipe_cnt == 1) { pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE; if (pipe->plane_state && !disable_unbounded_requesting && pipe->plane_state->tiling_info.gfx9.swizzle != DC_SW_LINEAR) { if (!is_dual_plane(pipe->plane_state->format)) { pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE; pipes[0].pipe.src.unbounded_req_mode = true; if (pipe->plane_state->src_rect.width >= 5120 && pipe->plane_state->src_rect.height >= 2880) pipes[0].pipe.src.det_size_override = 320; // 5K or higher } } } else dcn32_determine_det_override(dc, context, pipes); } #define MAX_STRETCHED_V_BLANK 1000 // in micro-seconds (must ensure to match value in FW) /* * Scaling factor for v_blank stretch calculations considering timing in * micro-seconds and pixel clock in 100hz. * Note: the parenthesis are necessary to ensure the correct order of * operation where V_SCALE is used. */ #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) static int get_frame_rate_at_max_stretch_100hz( struct dc_stream_state *fpo_candidate_stream, uint32_t fpo_vactive_margin_us) { struct dc_crtc_timing *timing = NULL; uint32_t sec_per_100_lines; uint32_t max_v_blank; uint32_t curr_v_blank; uint32_t v_stretch_max; uint32_t stretched_frame_pix_cnt; uint32_t scaled_stretched_frame_pix_cnt; uint32_t scaled_refresh_rate; uint32_t v_scale; if (fpo_candidate_stream == NULL) return 0; /* check if refresh rate at least 120hz */ timing = &fpo_candidate_stream->timing; if (timing == NULL) return 0; v_scale = 10000 / (MAX_STRETCHED_V_BLANK + fpo_vactive_margin_us); sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; max_v_blank = sec_per_100_lines / v_scale + 1; curr_v_blank = timing->v_total - timing->v_addressable; v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; return scaled_refresh_rate; } static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch( struct dc_stream_state *fpo_candidate_stream, uint32_t fpo_vactive_margin_us) { int refresh_rate_max_stretch_100hz; int min_refresh_100hz; if (fpo_candidate_stream == NULL) return false; refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(fpo_candidate_stream, fpo_vactive_margin_us); min_refresh_100hz = fpo_candidate_stream->timing.min_refresh_in_uhz / 10000; if (refresh_rate_max_stretch_100hz < min_refresh_100hz) return false; return true; } static int get_refresh_rate(struct dc_stream_state *fpo_candidate_stream) { int refresh_rate = 0; int h_v_total = 0; struct dc_crtc_timing *timing = NULL; if (fpo_candidate_stream == NULL) return 0; /* check if refresh rate at least 120hz */ timing = &fpo_candidate_stream->timing; if (timing == NULL) return 0; h_v_total = timing->h_total * timing->v_total; if (h_v_total == 0) return 0; refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; return refresh_rate; } /** * dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch() - Determines if config can * support FPO * * @dc: current dc state * @context: new dc state * * Return: Pointer to FPO stream candidate if config can support FPO, otherwise NULL */ struct dc_stream_state *dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) { int refresh_rate = 0; const int minimum_refreshrate_supported = 120; struct dc_stream_state *fpo_candidate_stream = NULL; bool is_fpo_vactive = false; uint32_t fpo_vactive_margin_us = 0; struct dc_stream_status *fpo_stream_status = NULL; if (context == NULL) return NULL; if (dc->debug.disable_fams) return NULL; if (!dc->caps.dmub_caps.mclk_sw) return NULL; if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) return NULL; /* For FPO we can support up to 2 display configs if: * - first display uses FPO * - Second display switches in VACTIVE */ if (context->stream_count > 2) return NULL; else if (context->stream_count == 2) { DC_FP_START(); dcn32_assign_fpo_vactive_candidate(dc, context, &fpo_candidate_stream); DC_FP_END(); if (fpo_candidate_stream) fpo_stream_status = dc_state_get_stream_status(context, fpo_candidate_stream); DC_FP_START(); is_fpo_vactive = dcn32_find_vactive_pipe(dc, context, dc->debug.fpo_vactive_min_active_margin_us); DC_FP_END(); if (!is_fpo_vactive || dc->debug.disable_fpo_vactive) return NULL; } else { fpo_candidate_stream = context->streams[0]; if (fpo_candidate_stream) fpo_stream_status = dc_state_get_stream_status(context, fpo_candidate_stream); } /* In DCN32/321, FPO uses per-pipe P-State force. * If there's no planes, HUBP is power gated and * therefore programming UCLK_PSTATE_FORCE does * nothing (P-State will always be asserted naturally * on a pipe that has HUBP power gated. Therefore we * only want to enable FPO if the FPO pipe has both * a stream and a plane. */ if (!fpo_candidate_stream || !fpo_stream_status || fpo_stream_status->plane_count == 0) return NULL; if (fpo_candidate_stream->sink->edid_caps.panel_patch.disable_fams) return NULL; refresh_rate = get_refresh_rate(fpo_candidate_stream); if (refresh_rate < minimum_refreshrate_supported) return NULL; fpo_vactive_margin_us = is_fpo_vactive ? dc->debug.fpo_vactive_margin_us : 0; // For now hardcode the FPO + Vactive stretch margin to be 2000us if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(fpo_candidate_stream, fpo_vactive_margin_us)) return NULL; if (!fpo_candidate_stream->allow_freesync) return NULL; if (fpo_candidate_stream->vrr_active_variable && dc->debug.disable_fams_gaming) return NULL; return fpo_candidate_stream; } bool dcn32_check_native_scaling_for_res(struct pipe_ctx *pipe, unsigned int width, unsigned int height) { bool is_native_scaling = false; if (pipe->stream->timing.h_addressable == width && pipe->stream->timing.v_addressable == height && pipe->plane_state->src_rect.width == width && pipe->plane_state->src_rect.height == height && pipe->plane_state->dst_rect.width == width && pipe->plane_state->dst_rect.height == height) is_native_scaling = true; return is_native_scaling; } /** * disallow_subvp_in_active_plus_blank() - Function to determine disallowed subvp + drr/vblank configs * * @pipe: subvp pipe to be used for the subvp + drr/vblank config * * Since subvp is being enabled on more configs (such as 1080p60), we want * to explicitly block any configs that we don't want to enable. We do not * want to enable any 1080p60 (SubVP) + drr / vblank configs since these * are already convered by FPO. * * Return: True if disallowed, false otherwise */ static bool disallow_subvp_in_active_plus_blank(struct pipe_ctx *pipe) { bool disallow = false; if (resource_is_pipe_type(pipe, OPP_HEAD) && resource_is_pipe_type(pipe, DPP_PIPE)) { if (pipe->stream->timing.v_addressable == 1080 && pipe->stream->timing.h_addressable == 1920) disallow = true; } return disallow; } /** * dcn32_subvp_drr_admissable() - Determine if SubVP + DRR config is admissible * * @dc: Current DC state * @context: New DC state to be programmed * * SubVP + DRR is admissible under the following conditions: * - Config must have 2 displays (i.e., 2 non-phantom master pipes) * - One display is SubVP * - Other display must have Freesync enabled * - The potential DRR display must not be PSR capable * * Return: True if admissible, false otherwise */ bool dcn32_subvp_drr_admissable(struct dc *dc, struct dc_state *context) { bool result = false; uint32_t i; uint8_t subvp_count = 0; uint8_t non_subvp_pipes = 0; bool drr_pipe_found = false; bool drr_psr_capable = false; uint64_t refresh_rate = 0; bool subvp_disallow = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); if (resource_is_pipe_type(pipe, OPP_HEAD) && resource_is_pipe_type(pipe, DPP_PIPE)) { if (pipe_mall_type == SUBVP_MAIN) { subvp_count++; subvp_disallow |= disallow_subvp_in_active_plus_blank(pipe); refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); } if (pipe_mall_type == SUBVP_NONE) { non_subvp_pipes++; drr_psr_capable = (drr_psr_capable || dcn32_is_psr_capable(pipe)); if (pipe->stream->ignore_msa_timing_param && (pipe->stream->allow_freesync || pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { drr_pipe_found = true; } } } } if (subvp_count == 1 && !subvp_disallow && non_subvp_pipes == 1 && drr_pipe_found && !drr_psr_capable && ((uint32_t)refresh_rate < 120)) result = true; return result; } /** * dcn32_subvp_vblank_admissable() - Determine if SubVP + Vblank config is admissible * * @dc: Current DC state * @context: New DC state to be programmed * @vlevel: Voltage level calculated by DML * * SubVP + Vblank is admissible under the following conditions: * - Config must have 2 displays (i.e., 2 non-phantom master pipes) * - One display is SubVP * - Other display must not have Freesync capability * - DML must have output DRAM clock change support as SubVP + Vblank * - The potential vblank display must not be PSR capable * * Return: True if admissible, false otherwise */ bool dcn32_subvp_vblank_admissable(struct dc *dc, struct dc_state *context, int vlevel) { bool result = false; uint32_t i; uint8_t subvp_count = 0; uint8_t non_subvp_pipes = 0; bool drr_pipe_found = false; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; bool vblank_psr_capable = false; uint64_t refresh_rate = 0; bool subvp_disallow = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe); if (resource_is_pipe_type(pipe, OPP_HEAD) && resource_is_pipe_type(pipe, DPP_PIPE)) { if (pipe_mall_type == SUBVP_MAIN) { subvp_count++; subvp_disallow |= disallow_subvp_in_active_plus_blank(pipe); refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 + pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total); refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total); } if (pipe_mall_type == SUBVP_NONE) { non_subvp_pipes++; vblank_psr_capable = (vblank_psr_capable || dcn32_is_psr_capable(pipe)); if (pipe->stream->ignore_msa_timing_param && (pipe->stream->allow_freesync || pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) { drr_pipe_found = true; } } } } if (subvp_count == 1 && non_subvp_pipes == 1 && !drr_pipe_found && !vblank_psr_capable && ((uint32_t)refresh_rate < 120) && !subvp_disallow && vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) result = true; return result; } void dcn32_update_dml_pipes_odm_policy_based_on_context(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; struct pipe_ctx *pipe = NULL; for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { int odm_slice_count = 0; if (!res_ctx->pipe_ctx[i].stream) continue; pipe = &res_ctx->pipe_ctx[i]; odm_slice_count = resource_get_odm_slice_count(pipe); if (odm_slice_count == 1) pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; else if (odm_slice_count == 2) pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; else if (odm_slice_count == 4) pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1; pipe_cnt++; } } void dcn32_override_min_req_dcfclk(struct dc *dc, struct dc_state *context) { if (dcn32_subvp_in_use(dc, context) && context->bw_ctx.bw.dcn.clk.dcfclk_khz <= MIN_SUBVP_DCFCLK_KHZ) context->bw_ctx.bw.dcn.clk.dcfclk_khz = MIN_SUBVP_DCFCLK_KHZ; }