// SPDX-License-Identifier: GPL-2.0 /* * Common EFI memory map functions. */ #define pr_fmt(fmt) "efi: " fmt #include #include #include #include #include #include #include #include #ifndef __efi_memmap_free #define __efi_memmap_free(phys, size, flags) do { } while (0) #endif /** * __efi_memmap_init - Common code for mapping the EFI memory map * @data: EFI memory map data * * This function takes care of figuring out which function to use to * map the EFI memory map in efi.memmap based on how far into the boot * we are. * * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we * only have access to the early_memremap*() functions as the vmalloc * space isn't setup. Once the kernel is fully booted we can fallback * to the more robust memremap*() API. * * Returns: zero on success, a negative error code on failure. */ int __init __efi_memmap_init(struct efi_memory_map_data *data) { struct efi_memory_map map; phys_addr_t phys_map; phys_map = data->phys_map; if (data->flags & EFI_MEMMAP_LATE) map.map = memremap(phys_map, data->size, MEMREMAP_WB); else map.map = early_memremap(phys_map, data->size); if (!map.map) { pr_err("Could not map the memory map!\n"); return -ENOMEM; } if (efi.memmap.flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB)) __efi_memmap_free(efi.memmap.phys_map, efi.memmap.desc_size * efi.memmap.nr_map, efi.memmap.flags); map.phys_map = data->phys_map; map.nr_map = data->size / data->desc_size; map.map_end = map.map + data->size; map.desc_version = data->desc_version; map.desc_size = data->desc_size; map.flags = data->flags; set_bit(EFI_MEMMAP, &efi.flags); efi.memmap = map; return 0; } /** * efi_memmap_init_early - Map the EFI memory map data structure * @data: EFI memory map data * * Use early_memremap() to map the passed in EFI memory map and assign * it to efi.memmap. * * Returns: zero on success, a negative error code on failure. */ int __init efi_memmap_init_early(struct efi_memory_map_data *data) { /* Cannot go backwards */ WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); data->flags = 0; return __efi_memmap_init(data); } void __init efi_memmap_unmap(void) { if (!efi_enabled(EFI_MEMMAP)) return; if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) { unsigned long size; size = efi.memmap.desc_size * efi.memmap.nr_map; early_memunmap(efi.memmap.map, size); } else { memunmap(efi.memmap.map); } efi.memmap.map = NULL; clear_bit(EFI_MEMMAP, &efi.flags); } /** * efi_memmap_init_late - Map efi.memmap with memremap() * @addr: Physical address of the new EFI memory map * @size: Size in bytes of the new EFI memory map * * Setup a mapping of the EFI memory map using ioremap_cache(). This * function should only be called once the vmalloc space has been * setup and is therefore not suitable for calling during early EFI * initialise, e.g. in efi_init(). Additionally, it expects * efi_memmap_init_early() to have already been called. * * The reason there are two EFI memmap initialisation * (efi_memmap_init_early() and this late version) is because the * early EFI memmap should be explicitly unmapped once EFI * initialisation is complete as the fixmap space used to map the EFI * memmap (via early_memremap()) is a scarce resource. * * This late mapping is intended to persist for the duration of * runtime so that things like efi_mem_desc_lookup() and * efi_mem_attributes() always work. * * Returns: zero on success, a negative error code on failure. */ int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) { struct efi_memory_map_data data = { .phys_map = addr, .size = size, .flags = EFI_MEMMAP_LATE, }; /* Did we forget to unmap the early EFI memmap? */ WARN_ON(efi.memmap.map); /* Were we already called? */ WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); /* * It makes no sense to allow callers to register different * values for the following fields. Copy them out of the * existing early EFI memmap. */ data.desc_version = efi.memmap.desc_version; data.desc_size = efi.memmap.desc_size; return __efi_memmap_init(&data); }