// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #define dev_fmt(fmt) "RateLimiting: " fmt #include #include #include #include #include #include #include #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_rl_admin.h" #include "adf_rl.h" #include "adf_sysfs_rl.h" #define RL_TOKEN_GRANULARITY_PCIEIN_BUCKET 0U #define RL_TOKEN_GRANULARITY_PCIEOUT_BUCKET 0U #define RL_TOKEN_PCIE_SIZE 64 #define RL_TOKEN_ASYM_SIZE 1024 #define RL_CSR_SIZE 4U #define RL_CAPABILITY_MASK GENMASK(6, 4) #define RL_CAPABILITY_VALUE 0x70 #define RL_VALIDATE_NON_ZERO(input) ((input) == 0) #define ROOT_MASK GENMASK(1, 0) #define CLUSTER_MASK GENMASK(3, 0) #define LEAF_MASK GENMASK(5, 0) static int validate_user_input(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in, bool is_update) { const unsigned long rp_mask = sla_in->rp_mask; size_t rp_mask_size; int i, cnt; if (sla_in->pir < sla_in->cir) { dev_notice(&GET_DEV(accel_dev), "PIR must be >= CIR, setting PIR to CIR\n"); sla_in->pir = sla_in->cir; } if (!is_update) { cnt = 0; rp_mask_size = sizeof(sla_in->rp_mask) * BITS_PER_BYTE; for_each_set_bit(i, &rp_mask, rp_mask_size) { if (++cnt > RL_RP_CNT_PER_LEAF_MAX) { dev_notice(&GET_DEV(accel_dev), "Too many ring pairs selected for this SLA\n"); return -EINVAL; } } if (sla_in->srv >= ADF_SVC_NONE) { dev_notice(&GET_DEV(accel_dev), "Wrong service type\n"); return -EINVAL; } if (sla_in->type > RL_LEAF) { dev_notice(&GET_DEV(accel_dev), "Wrong node type\n"); return -EINVAL; } if (sla_in->parent_id < RL_PARENT_DEFAULT_ID || sla_in->parent_id >= RL_NODES_CNT_MAX) { dev_notice(&GET_DEV(accel_dev), "Wrong parent ID\n"); return -EINVAL; } } return 0; } static int validate_sla_id(struct adf_accel_dev *accel_dev, int sla_id) { struct rl_sla *sla; if (sla_id <= RL_SLA_EMPTY_ID || sla_id >= RL_NODES_CNT_MAX) { dev_notice(&GET_DEV(accel_dev), "Provided ID is out of bounds\n"); return -EINVAL; } sla = accel_dev->rate_limiting->sla[sla_id]; if (!sla) { dev_notice(&GET_DEV(accel_dev), "SLA with provided ID does not exist\n"); return -EINVAL; } if (sla->type != RL_LEAF) { dev_notice(&GET_DEV(accel_dev), "This ID is reserved for internal use\n"); return -EINVAL; } return 0; } /** * find_parent() - Find the parent for a new SLA * @rl_data: pointer to ratelimiting data * @sla_in: pointer to user input data for a new SLA * * Function returns a pointer to the parent SLA. If the parent ID is provided * as input in the user data, then such ID is validated and the parent SLA * is returned. * Otherwise, it returns the default parent SLA (root or cluster) for * the new object. * * Return: * * Pointer to the parent SLA object * * NULL - when parent cannot be found */ static struct rl_sla *find_parent(struct adf_rl *rl_data, struct adf_rl_sla_input_data *sla_in) { int input_parent_id = sla_in->parent_id; struct rl_sla *root = NULL; struct rl_sla *parent_sla; int i; if (sla_in->type == RL_ROOT) return NULL; if (input_parent_id > RL_PARENT_DEFAULT_ID) { parent_sla = rl_data->sla[input_parent_id]; /* * SLA can be a parent if it has the same service as the child * and its type is higher in the hierarchy, * for example the parent type of a LEAF must be a CLUSTER. */ if (parent_sla && parent_sla->srv == sla_in->srv && parent_sla->type == sla_in->type - 1) return parent_sla; return NULL; } /* If input_parent_id is not valid, get root for this service type. */ for (i = 0; i < RL_ROOT_MAX; i++) { if (rl_data->root[i] && rl_data->root[i]->srv == sla_in->srv) { root = rl_data->root[i]; break; } } if (!root) return NULL; /* * If the type of this SLA is cluster, then return the root. * Otherwise, find the default (i.e. first) cluster for this service. */ if (sla_in->type == RL_CLUSTER) return root; for (i = 0; i < RL_CLUSTER_MAX; i++) { if (rl_data->cluster[i] && rl_data->cluster[i]->parent == root) return rl_data->cluster[i]; } return NULL; } static enum adf_cfg_service_type srv_to_cfg_svc_type(enum adf_base_services rl_srv) { switch (rl_srv) { case ADF_SVC_ASYM: return ASYM; case ADF_SVC_SYM: return SYM; case ADF_SVC_DC: return COMP; default: return UNUSED; } } /** * adf_rl_get_sla_arr_of_type() - Returns a pointer to SLA type specific array * @rl_data: pointer to ratelimiting data * @type: SLA type * @sla_arr: pointer to variable where requested pointer will be stored * * Return: Max number of elements allowed for the returned array */ u32 adf_rl_get_sla_arr_of_type(struct adf_rl *rl_data, enum rl_node_type type, struct rl_sla ***sla_arr) { switch (type) { case RL_LEAF: *sla_arr = rl_data->leaf; return RL_LEAF_MAX; case RL_CLUSTER: *sla_arr = rl_data->cluster; return RL_CLUSTER_MAX; case RL_ROOT: *sla_arr = rl_data->root; return RL_ROOT_MAX; default: *sla_arr = NULL; return 0; } } static bool is_service_enabled(struct adf_accel_dev *accel_dev, enum adf_base_services rl_srv) { enum adf_cfg_service_type arb_srv = srv_to_cfg_svc_type(rl_srv); struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); u8 rps_per_bundle = hw_data->num_banks_per_vf; int i; for (i = 0; i < rps_per_bundle; i++) { if (GET_SRV_TYPE(accel_dev, i) == arb_srv) return true; } return false; } /** * prepare_rp_ids() - Creates an array of ring pair IDs from bitmask * @accel_dev: pointer to acceleration device structure * @sla: SLA object data where result will be written * @rp_mask: bitmask of ring pair IDs * * Function tries to convert provided bitmap to an array of IDs. It checks if * RPs aren't in use, are assigned to SLA service or if a number of provided * IDs is not too big. If successful, writes the result into the field * sla->ring_pairs_cnt. * * Return: * * 0 - ok * * -EINVAL - ring pairs array cannot be created from provided mask */ static int prepare_rp_ids(struct adf_accel_dev *accel_dev, struct rl_sla *sla, const unsigned long rp_mask) { enum adf_cfg_service_type arb_srv = srv_to_cfg_svc_type(sla->srv); u16 rps_per_bundle = GET_HW_DATA(accel_dev)->num_banks_per_vf; bool *rp_in_use = accel_dev->rate_limiting->rp_in_use; size_t rp_cnt_max = ARRAY_SIZE(sla->ring_pairs_ids); u16 rp_id_max = GET_HW_DATA(accel_dev)->num_banks; u16 cnt = 0; u16 rp_id; for_each_set_bit(rp_id, &rp_mask, rp_id_max) { if (cnt >= rp_cnt_max) { dev_notice(&GET_DEV(accel_dev), "Assigned more ring pairs than supported"); return -EINVAL; } if (rp_in_use[rp_id]) { dev_notice(&GET_DEV(accel_dev), "RP %u already assigned to other SLA", rp_id); return -EINVAL; } if (GET_SRV_TYPE(accel_dev, rp_id % rps_per_bundle) != arb_srv) { dev_notice(&GET_DEV(accel_dev), "RP %u does not support SLA service", rp_id); return -EINVAL; } sla->ring_pairs_ids[cnt++] = rp_id; } sla->ring_pairs_cnt = cnt; return 0; } static void mark_rps_usage(struct rl_sla *sla, bool *rp_in_use, bool used) { u16 rp_id; int i; for (i = 0; i < sla->ring_pairs_cnt; i++) { rp_id = sla->ring_pairs_ids[i]; rp_in_use[rp_id] = used; } } static void assign_rps_to_leaf(struct adf_accel_dev *accel_dev, struct rl_sla *sla, bool clear) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 base_offset = hw_data->rl_data.r2l_offset; u32 node_id = clear ? 0U : (sla->node_id & LEAF_MASK); u32 offset; int i; for (i = 0; i < sla->ring_pairs_cnt; i++) { offset = base_offset + (RL_CSR_SIZE * sla->ring_pairs_ids[i]); ADF_CSR_WR(pmisc_addr, offset, node_id); } } static void assign_leaf_to_cluster(struct adf_accel_dev *accel_dev, struct rl_sla *sla, bool clear) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 base_offset = hw_data->rl_data.l2c_offset; u32 node_id = sla->node_id & LEAF_MASK; u32 parent_id = clear ? 0U : (sla->parent->node_id & CLUSTER_MASK); u32 offset; offset = base_offset + (RL_CSR_SIZE * node_id); ADF_CSR_WR(pmisc_addr, offset, parent_id); } static void assign_cluster_to_root(struct adf_accel_dev *accel_dev, struct rl_sla *sla, bool clear) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 base_offset = hw_data->rl_data.c2s_offset; u32 node_id = sla->node_id & CLUSTER_MASK; u32 parent_id = clear ? 0U : (sla->parent->node_id & ROOT_MASK); u32 offset; offset = base_offset + (RL_CSR_SIZE * node_id); ADF_CSR_WR(pmisc_addr, offset, parent_id); } static void assign_node_to_parent(struct adf_accel_dev *accel_dev, struct rl_sla *sla, bool clear_assignment) { switch (sla->type) { case RL_LEAF: assign_rps_to_leaf(accel_dev, sla, clear_assignment); assign_leaf_to_cluster(accel_dev, sla, clear_assignment); break; case RL_CLUSTER: assign_cluster_to_root(accel_dev, sla, clear_assignment); break; default: break; } } /** * can_parent_afford_sla() - Verifies if parent allows to create an SLA * @sla_in: pointer to user input data for a new SLA * @sla_parent: pointer to parent SLA object * @sla_cir: current child CIR value (only for update) * @is_update: request is a update * * Algorithm verifies if parent has enough remaining budget to take assignment * of a child with provided parameters. In update case current CIR value must be * returned to budget first. * PIR value cannot exceed the PIR assigned to parent. * * Return: * * true - SLA can be created * * false - SLA cannot be created */ static bool can_parent_afford_sla(struct adf_rl_sla_input_data *sla_in, struct rl_sla *sla_parent, u32 sla_cir, bool is_update) { u32 rem_cir = sla_parent->rem_cir; if (is_update) rem_cir += sla_cir; if (sla_in->cir > rem_cir || sla_in->pir > sla_parent->pir) return false; return true; } /** * can_node_afford_update() - Verifies if SLA can be updated with input data * @sla_in: pointer to user input data for a new SLA * @sla: pointer to SLA object selected for update * * Algorithm verifies if a new CIR value is big enough to satisfy currently * assigned child SLAs and if PIR can be updated * * Return: * * true - SLA can be updated * * false - SLA cannot be updated */ static bool can_node_afford_update(struct adf_rl_sla_input_data *sla_in, struct rl_sla *sla) { u32 cir_in_use = sla->cir - sla->rem_cir; /* new CIR cannot be smaller then currently consumed value */ if (cir_in_use > sla_in->cir) return false; /* PIR of root/cluster cannot be reduced in node with assigned children */ if (sla_in->pir < sla->pir && sla->type != RL_LEAF && cir_in_use > 0) return false; return true; } static bool is_enough_budget(struct adf_rl *rl_data, struct rl_sla *sla, struct adf_rl_sla_input_data *sla_in, bool is_update) { u32 max_val = rl_data->device_data->scale_ref; struct rl_sla *parent = sla->parent; bool ret = true; if (sla_in->cir > max_val || sla_in->pir > max_val) ret = false; switch (sla->type) { case RL_LEAF: ret &= can_parent_afford_sla(sla_in, parent, sla->cir, is_update); break; case RL_CLUSTER: ret &= can_parent_afford_sla(sla_in, parent, sla->cir, is_update); if (is_update) ret &= can_node_afford_update(sla_in, sla); break; case RL_ROOT: if (is_update) ret &= can_node_afford_update(sla_in, sla); break; default: ret = false; break; } return ret; } static void update_budget(struct rl_sla *sla, u32 old_cir, bool is_update) { switch (sla->type) { case RL_LEAF: if (is_update) sla->parent->rem_cir += old_cir; sla->parent->rem_cir -= sla->cir; sla->rem_cir = 0; break; case RL_CLUSTER: if (is_update) { sla->parent->rem_cir += old_cir; sla->rem_cir = sla->cir - (old_cir - sla->rem_cir); } else { sla->rem_cir = sla->cir; } sla->parent->rem_cir -= sla->cir; break; case RL_ROOT: if (is_update) sla->rem_cir = sla->cir - (old_cir - sla->rem_cir); else sla->rem_cir = sla->cir; break; default: break; } } /** * get_next_free_sla_id() - finds next free ID in the SLA array * @rl_data: Pointer to ratelimiting data structure * * Return: * * 0 : RL_NODES_CNT_MAX - correct ID * * -ENOSPC - all SLA slots are in use */ static int get_next_free_sla_id(struct adf_rl *rl_data) { int i = 0; while (i < RL_NODES_CNT_MAX && rl_data->sla[i++]) ; if (i == RL_NODES_CNT_MAX) return -ENOSPC; return i - 1; } /** * get_next_free_node_id() - finds next free ID in the array of that node type * @rl_data: Pointer to ratelimiting data structure * @sla: Pointer to SLA object for which the ID is searched * * Return: * * 0 : RL_[NODE_TYPE]_MAX - correct ID * * -ENOSPC - all slots of that type are in use */ static int get_next_free_node_id(struct adf_rl *rl_data, struct rl_sla *sla) { struct adf_hw_device_data *hw_device = GET_HW_DATA(rl_data->accel_dev); int max_id, i, step, rp_per_leaf; struct rl_sla **sla_list; rp_per_leaf = hw_device->num_banks / hw_device->num_banks_per_vf; /* * Static nodes mapping: * root0 - cluster[0,4,8,12] - leaf[0-15] * root1 - cluster[1,5,9,13] - leaf[16-31] * root2 - cluster[2,6,10,14] - leaf[32-47] */ switch (sla->type) { case RL_LEAF: i = sla->srv * rp_per_leaf; step = 1; max_id = i + rp_per_leaf; sla_list = rl_data->leaf; break; case RL_CLUSTER: i = sla->srv; step = 4; max_id = RL_CLUSTER_MAX; sla_list = rl_data->cluster; break; case RL_ROOT: return sla->srv; default: return -EINVAL; } while (i < max_id && sla_list[i]) i += step; if (i >= max_id) return -ENOSPC; return i; } u32 adf_rl_calculate_slice_tokens(struct adf_accel_dev *accel_dev, u32 sla_val, enum adf_base_services svc_type) { struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data; struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); u64 avail_slice_cycles, allocated_tokens; if (!sla_val) return 0; avail_slice_cycles = hw_data->clock_frequency; switch (svc_type) { case ADF_SVC_ASYM: avail_slice_cycles *= device_data->slices.pke_cnt; break; case ADF_SVC_SYM: avail_slice_cycles *= device_data->slices.cph_cnt; break; case ADF_SVC_DC: avail_slice_cycles *= device_data->slices.dcpr_cnt; break; default: break; } do_div(avail_slice_cycles, device_data->scan_interval); allocated_tokens = avail_slice_cycles * sla_val; do_div(allocated_tokens, device_data->scale_ref); return allocated_tokens; } u32 adf_rl_calculate_ae_cycles(struct adf_accel_dev *accel_dev, u32 sla_val, enum adf_base_services svc_type) { struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data; struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); u64 allocated_ae_cycles, avail_ae_cycles; if (!sla_val) return 0; avail_ae_cycles = hw_data->clock_frequency; avail_ae_cycles *= hw_data->get_num_aes(hw_data) - 1; do_div(avail_ae_cycles, device_data->scan_interval); sla_val *= device_data->max_tp[svc_type]; sla_val /= device_data->scale_ref; allocated_ae_cycles = (sla_val * avail_ae_cycles); do_div(allocated_ae_cycles, device_data->max_tp[svc_type]); return allocated_ae_cycles; } u32 adf_rl_calculate_pci_bw(struct adf_accel_dev *accel_dev, u32 sla_val, enum adf_base_services svc_type, bool is_bw_out) { struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data; u64 sla_to_bytes, allocated_bw, sla_scaled; if (!sla_val) return 0; sla_to_bytes = sla_val; sla_to_bytes *= device_data->max_tp[svc_type]; do_div(sla_to_bytes, device_data->scale_ref); sla_to_bytes *= (svc_type == ADF_SVC_ASYM) ? RL_TOKEN_ASYM_SIZE : BYTES_PER_MBIT; if (svc_type == ADF_SVC_DC && is_bw_out) sla_to_bytes *= device_data->slices.dcpr_cnt - device_data->dcpr_correction; sla_scaled = sla_to_bytes * device_data->pcie_scale_mul; do_div(sla_scaled, device_data->pcie_scale_div); allocated_bw = sla_scaled; do_div(allocated_bw, RL_TOKEN_PCIE_SIZE); do_div(allocated_bw, device_data->scan_interval); return allocated_bw; } /** * add_new_sla_entry() - creates a new SLA object and fills it with user data * @accel_dev: pointer to acceleration device structure * @sla_in: pointer to user input data for a new SLA * @sla_out: Pointer to variable that will contain the address of a new * SLA object if the operation succeeds * * Return: * * 0 - ok * * -ENOMEM - memory allocation failed * * -EINVAL - invalid user input * * -ENOSPC - all available SLAs are in use */ static int add_new_sla_entry(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in, struct rl_sla **sla_out) { struct adf_rl *rl_data = accel_dev->rate_limiting; struct rl_sla *sla; int ret = 0; sla = kzalloc(sizeof(*sla), GFP_KERNEL); if (!sla) { ret = -ENOMEM; goto ret_err; } *sla_out = sla; if (!is_service_enabled(accel_dev, sla_in->srv)) { dev_notice(&GET_DEV(accel_dev), "Provided service is not enabled\n"); ret = -EINVAL; goto ret_err; } sla->srv = sla_in->srv; sla->type = sla_in->type; ret = get_next_free_node_id(rl_data, sla); if (ret < 0) { dev_notice(&GET_DEV(accel_dev), "Exceeded number of available nodes for that service\n"); goto ret_err; } sla->node_id = ret; ret = get_next_free_sla_id(rl_data); if (ret < 0) { dev_notice(&GET_DEV(accel_dev), "Allocated maximum SLAs number\n"); goto ret_err; } sla->sla_id = ret; sla->parent = find_parent(rl_data, sla_in); if (!sla->parent && sla->type != RL_ROOT) { if (sla_in->parent_id != RL_PARENT_DEFAULT_ID) dev_notice(&GET_DEV(accel_dev), "Provided parent ID does not exist or cannot be parent for this SLA."); else dev_notice(&GET_DEV(accel_dev), "Unable to find parent node for this service. Is service enabled?"); ret = -EINVAL; goto ret_err; } if (sla->type == RL_LEAF) { ret = prepare_rp_ids(accel_dev, sla, sla_in->rp_mask); if (!sla->ring_pairs_cnt || ret) { dev_notice(&GET_DEV(accel_dev), "Unable to find ring pairs to assign to the leaf"); if (!ret) ret = -EINVAL; goto ret_err; } } return 0; ret_err: kfree(sla); *sla_out = NULL; return ret; } static int initialize_default_nodes(struct adf_accel_dev *accel_dev) { struct adf_rl *rl_data = accel_dev->rate_limiting; struct adf_rl_hw_data *device_data = rl_data->device_data; struct adf_rl_sla_input_data sla_in = { }; int ret = 0; int i; /* Init root for each enabled service */ sla_in.type = RL_ROOT; sla_in.parent_id = RL_PARENT_DEFAULT_ID; for (i = 0; i < ADF_SVC_NONE; i++) { if (!is_service_enabled(accel_dev, i)) continue; sla_in.cir = device_data->scale_ref; sla_in.pir = sla_in.cir; sla_in.srv = i; ret = adf_rl_add_sla(accel_dev, &sla_in); if (ret) return ret; } /* Init default cluster for each root */ sla_in.type = RL_CLUSTER; for (i = 0; i < ADF_SVC_NONE; i++) { if (!rl_data->root[i]) continue; sla_in.cir = rl_data->root[i]->cir; sla_in.pir = sla_in.cir; sla_in.srv = rl_data->root[i]->srv; ret = adf_rl_add_sla(accel_dev, &sla_in); if (ret) return ret; } return 0; } static void clear_sla(struct adf_rl *rl_data, struct rl_sla *sla) { bool *rp_in_use = rl_data->rp_in_use; struct rl_sla **sla_type_arr = NULL; int i, sla_id, node_id; u32 old_cir; sla_id = sla->sla_id; node_id = sla->node_id; old_cir = sla->cir; sla->cir = 0; sla->pir = 0; for (i = 0; i < sla->ring_pairs_cnt; i++) rp_in_use[sla->ring_pairs_ids[i]] = false; update_budget(sla, old_cir, true); adf_rl_get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr); assign_node_to_parent(rl_data->accel_dev, sla, true); adf_rl_send_admin_delete_msg(rl_data->accel_dev, node_id, sla->type); mark_rps_usage(sla, rl_data->rp_in_use, false); kfree(sla); rl_data->sla[sla_id] = NULL; sla_type_arr[node_id] = NULL; } static void free_all_sla(struct adf_accel_dev *accel_dev) { struct adf_rl *rl_data = accel_dev->rate_limiting; int sla_id; mutex_lock(&rl_data->rl_lock); for (sla_id = 0; sla_id < RL_NODES_CNT_MAX; sla_id++) { if (!rl_data->sla[sla_id]) continue; kfree(rl_data->sla[sla_id]); rl_data->sla[sla_id] = NULL; } mutex_unlock(&rl_data->rl_lock); } /** * add_update_sla() - handles the creation and the update of an SLA * @accel_dev: pointer to acceleration device structure * @sla_in: pointer to user input data for a new/updated SLA * @is_update: flag to indicate if this is an update or an add operation * * Return: * * 0 - ok * * -ENOMEM - memory allocation failed * * -EINVAL - user input data cannot be used to create SLA * * -ENOSPC - all available SLAs are in use */ static int add_update_sla(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in, bool is_update) { struct adf_rl *rl_data = accel_dev->rate_limiting; struct rl_sla **sla_type_arr = NULL; struct rl_sla *sla = NULL; u32 old_cir = 0; int ret; if (!sla_in) { dev_warn(&GET_DEV(accel_dev), "SLA input data pointer is missing\n"); return -EFAULT; } mutex_lock(&rl_data->rl_lock); /* Input validation */ ret = validate_user_input(accel_dev, sla_in, is_update); if (ret) goto ret_err; if (is_update) { ret = validate_sla_id(accel_dev, sla_in->sla_id); if (ret) goto ret_err; sla = rl_data->sla[sla_in->sla_id]; old_cir = sla->cir; } else { ret = add_new_sla_entry(accel_dev, sla_in, &sla); if (ret) goto ret_err; } if (!is_enough_budget(rl_data, sla, sla_in, is_update)) { dev_notice(&GET_DEV(accel_dev), "Input value exceeds the remaining budget%s\n", is_update ? " or more budget is already in use" : ""); ret = -EINVAL; goto ret_err; } sla->cir = sla_in->cir; sla->pir = sla_in->pir; /* Apply SLA */ assign_node_to_parent(accel_dev, sla, false); ret = adf_rl_send_admin_add_update_msg(accel_dev, sla, is_update); if (ret) { dev_notice(&GET_DEV(accel_dev), "Failed to apply an SLA\n"); goto ret_err; } update_budget(sla, old_cir, is_update); if (!is_update) { mark_rps_usage(sla, rl_data->rp_in_use, true); adf_rl_get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr); sla_type_arr[sla->node_id] = sla; rl_data->sla[sla->sla_id] = sla; } sla_in->sla_id = sla->sla_id; goto ret_ok; ret_err: if (!is_update) { sla_in->sla_id = -1; kfree(sla); } ret_ok: mutex_unlock(&rl_data->rl_lock); return ret; } /** * adf_rl_add_sla() - handles the creation of an SLA * @accel_dev: pointer to acceleration device structure * @sla_in: pointer to user input data required to add an SLA * * Return: * * 0 - ok * * -ENOMEM - memory allocation failed * * -EINVAL - invalid user input * * -ENOSPC - all available SLAs are in use */ int adf_rl_add_sla(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in) { return add_update_sla(accel_dev, sla_in, false); } /** * adf_rl_update_sla() - handles the update of an SLA * @accel_dev: pointer to acceleration device structure * @sla_in: pointer to user input data required to update an SLA * * Return: * * 0 - ok * * -EINVAL - user input data cannot be used to update SLA */ int adf_rl_update_sla(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in) { return add_update_sla(accel_dev, sla_in, true); } /** * adf_rl_get_sla() - returns an existing SLA data * @accel_dev: pointer to acceleration device structure * @sla_in: pointer to user data where SLA info will be stored * * The sla_id for which data are requested should be set in sla_id structure * * Return: * * 0 - ok * * -EINVAL - provided sla_id does not exist */ int adf_rl_get_sla(struct adf_accel_dev *accel_dev, struct adf_rl_sla_input_data *sla_in) { struct rl_sla *sla; int ret, i; ret = validate_sla_id(accel_dev, sla_in->sla_id); if (ret) return ret; sla = accel_dev->rate_limiting->sla[sla_in->sla_id]; sla_in->type = sla->type; sla_in->srv = sla->srv; sla_in->cir = sla->cir; sla_in->pir = sla->pir; sla_in->rp_mask = 0U; if (sla->parent) sla_in->parent_id = sla->parent->sla_id; else sla_in->parent_id = RL_PARENT_DEFAULT_ID; for (i = 0; i < sla->ring_pairs_cnt; i++) sla_in->rp_mask |= BIT(sla->ring_pairs_ids[i]); return 0; } /** * adf_rl_get_capability_remaining() - returns the remaining SLA value (CIR) for * selected service or provided sla_id * @accel_dev: pointer to acceleration device structure * @srv: service ID for which capability is requested * @sla_id: ID of the cluster or root to which we want assign a new SLA * * Check if the provided SLA id is valid. If it is and the service matches * the requested service and the type is cluster or root, return the remaining * capability. * If the provided ID does not match the service or type, return the remaining * capacity of the default cluster for that service. * * Return: * * Positive value - correct remaining value * * -EINVAL - algorithm cannot find a remaining value for provided data */ int adf_rl_get_capability_remaining(struct adf_accel_dev *accel_dev, enum adf_base_services srv, int sla_id) { struct adf_rl *rl_data = accel_dev->rate_limiting; struct rl_sla *sla = NULL; int i; if (srv >= ADF_SVC_NONE) return -EINVAL; if (sla_id > RL_SLA_EMPTY_ID && !validate_sla_id(accel_dev, sla_id)) { sla = rl_data->sla[sla_id]; if (sla->srv == srv && sla->type <= RL_CLUSTER) goto ret_ok; } for (i = 0; i < RL_CLUSTER_MAX; i++) { if (!rl_data->cluster[i]) continue; if (rl_data->cluster[i]->srv == srv) { sla = rl_data->cluster[i]; goto ret_ok; } } return -EINVAL; ret_ok: return sla->rem_cir; } /** * adf_rl_remove_sla() - removes provided sla_id * @accel_dev: pointer to acceleration device structure * @sla_id: ID of the cluster or root to which we want assign an new SLA * * Return: * * 0 - ok * * -EINVAL - wrong sla_id or it still have assigned children */ int adf_rl_remove_sla(struct adf_accel_dev *accel_dev, u32 sla_id) { struct adf_rl *rl_data = accel_dev->rate_limiting; struct rl_sla *sla; int ret = 0; mutex_lock(&rl_data->rl_lock); ret = validate_sla_id(accel_dev, sla_id); if (ret) goto err_ret; sla = rl_data->sla[sla_id]; if (sla->type < RL_LEAF && sla->rem_cir != sla->cir) { dev_notice(&GET_DEV(accel_dev), "To remove parent SLA all its children must be removed first"); ret = -EINVAL; goto err_ret; } clear_sla(rl_data, sla); err_ret: mutex_unlock(&rl_data->rl_lock); return ret; } /** * adf_rl_remove_sla_all() - removes all SLAs from device * @accel_dev: pointer to acceleration device structure * @incl_default: set to true if default SLAs also should be removed */ void adf_rl_remove_sla_all(struct adf_accel_dev *accel_dev, bool incl_default) { struct adf_rl *rl_data = accel_dev->rate_limiting; int end_type = incl_default ? RL_ROOT : RL_LEAF; struct rl_sla **sla_type_arr = NULL; u32 max_id; int i, j; mutex_lock(&rl_data->rl_lock); /* Unregister and remove all SLAs */ for (j = RL_LEAF; j >= end_type; j--) { max_id = adf_rl_get_sla_arr_of_type(rl_data, j, &sla_type_arr); for (i = 0; i < max_id; i++) { if (!sla_type_arr[i]) continue; clear_sla(rl_data, sla_type_arr[i]); } } mutex_unlock(&rl_data->rl_lock); } int adf_rl_init(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); struct adf_rl_hw_data *rl_hw_data = &hw_data->rl_data; struct adf_rl *rl; int ret = 0; /* Validate device parameters */ if (RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_ASYM]) || RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_SYM]) || RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_DC]) || RL_VALIDATE_NON_ZERO(rl_hw_data->scan_interval) || RL_VALIDATE_NON_ZERO(rl_hw_data->pcie_scale_div) || RL_VALIDATE_NON_ZERO(rl_hw_data->pcie_scale_mul) || RL_VALIDATE_NON_ZERO(rl_hw_data->scale_ref)) { ret = -EOPNOTSUPP; goto err_ret; } rl = kzalloc(sizeof(*rl), GFP_KERNEL); if (!rl) { ret = -ENOMEM; goto err_ret; } mutex_init(&rl->rl_lock); rl->device_data = &accel_dev->hw_device->rl_data; rl->accel_dev = accel_dev; accel_dev->rate_limiting = rl; err_ret: return ret; } int adf_rl_start(struct adf_accel_dev *accel_dev) { struct adf_rl_hw_data *rl_hw_data = &GET_HW_DATA(accel_dev)->rl_data; void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u16 fw_caps = GET_HW_DATA(accel_dev)->fw_capabilities; int ret; if (!accel_dev->rate_limiting) { ret = -EOPNOTSUPP; goto ret_err; } if ((fw_caps & RL_CAPABILITY_MASK) != RL_CAPABILITY_VALUE) { dev_info(&GET_DEV(accel_dev), "feature not supported by FW\n"); ret = -EOPNOTSUPP; goto ret_free; } ADF_CSR_WR(pmisc_addr, rl_hw_data->pciin_tb_offset, RL_TOKEN_GRANULARITY_PCIEIN_BUCKET); ADF_CSR_WR(pmisc_addr, rl_hw_data->pciout_tb_offset, RL_TOKEN_GRANULARITY_PCIEOUT_BUCKET); ret = adf_rl_send_admin_init_msg(accel_dev, &rl_hw_data->slices); if (ret) { dev_err(&GET_DEV(accel_dev), "initialization failed\n"); goto ret_free; } ret = initialize_default_nodes(accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "failed to initialize default SLAs\n"); goto ret_sla_rm; } ret = adf_sysfs_rl_add(accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "failed to add sysfs interface\n"); goto ret_sysfs_rm; } return 0; ret_sysfs_rm: adf_sysfs_rl_rm(accel_dev); ret_sla_rm: adf_rl_remove_sla_all(accel_dev, true); ret_free: kfree(accel_dev->rate_limiting); accel_dev->rate_limiting = NULL; ret_err: return ret; } void adf_rl_stop(struct adf_accel_dev *accel_dev) { if (!accel_dev->rate_limiting) return; adf_sysfs_rl_rm(accel_dev); free_all_sla(accel_dev); } void adf_rl_exit(struct adf_accel_dev *accel_dev) { if (!accel_dev->rate_limiting) return; kfree(accel_dev->rate_limiting); accel_dev->rate_limiting = NULL; }