// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include <linux/pci.h> #include <linux/hwmon.h> #define HWMON_NR_SENSOR_TYPES (hwmon_max) #ifdef _HAS_HWMON_HWMON_T_ENABLE static u32 fixup_flags_legacy_fw(struct hl_device *hdev, enum hwmon_sensor_types type, u32 cpucp_flags) { u32 flags; switch (type) { case hwmon_temp: flags = (cpucp_flags << 1) | HWMON_T_ENABLE; break; case hwmon_in: flags = (cpucp_flags << 1) | HWMON_I_ENABLE; break; case hwmon_curr: flags = (cpucp_flags << 1) | HWMON_C_ENABLE; break; case hwmon_fan: flags = (cpucp_flags << 1) | HWMON_F_ENABLE; break; case hwmon_power: flags = (cpucp_flags << 1) | HWMON_P_ENABLE; break; case hwmon_pwm: /* enable bit was here from day 1, so no need to adjust */ flags = cpucp_flags; break; default: dev_err_ratelimited(hdev->dev, "unsupported h/w sensor type %d\n", type); flags = cpucp_flags; break; } return flags; } static u32 fixup_attr_legacy_fw(u32 attr) { return (attr - 1); } #else static u32 fixup_flags_legacy_fw(struct hl_device *hdev, enum hwmon_sensor_types type, u32 cpucp_flags) { return cpucp_flags; } static u32 fixup_attr_legacy_fw(u32 attr) { return attr; } #endif /* !_HAS_HWMON_HWMON_T_ENABLE */ static u32 adjust_hwmon_flags(struct hl_device *hdev, enum hwmon_sensor_types type, u32 cpucp_flags) { u32 flags, cpucp_input_val; bool use_cpucp_enum; use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false; /* If f/w is using it's own enum, we need to check if the properties values are aligned. * If not, it means we need to adjust the values to the new format that is used in the * kernel since 5.6 (enum values were incremented by 1 by adding a new enable value). */ if (use_cpucp_enum) { switch (type) { case hwmon_temp: cpucp_input_val = cpucp_temp_input; if (cpucp_input_val == hwmon_temp_input) flags = cpucp_flags; else flags = (cpucp_flags << 1) | HWMON_T_ENABLE; break; case hwmon_in: cpucp_input_val = cpucp_in_input; if (cpucp_input_val == hwmon_in_input) flags = cpucp_flags; else flags = (cpucp_flags << 1) | HWMON_I_ENABLE; break; case hwmon_curr: cpucp_input_val = cpucp_curr_input; if (cpucp_input_val == hwmon_curr_input) flags = cpucp_flags; else flags = (cpucp_flags << 1) | HWMON_C_ENABLE; break; case hwmon_fan: cpucp_input_val = cpucp_fan_input; if (cpucp_input_val == hwmon_fan_input) flags = cpucp_flags; else flags = (cpucp_flags << 1) | HWMON_F_ENABLE; break; case hwmon_pwm: /* enable bit was here from day 1, so no need to adjust */ flags = cpucp_flags; break; case hwmon_power: cpucp_input_val = CPUCP_POWER_INPUT; if (cpucp_input_val == hwmon_power_input) flags = cpucp_flags; else flags = (cpucp_flags << 1) | HWMON_P_ENABLE; break; default: dev_err_ratelimited(hdev->dev, "unsupported h/w sensor type %d\n", type); flags = cpucp_flags; break; } } else { flags = fixup_flags_legacy_fw(hdev, type, cpucp_flags); } return flags; } int hl_build_hwmon_channel_info(struct hl_device *hdev, struct cpucp_sensor *sensors_arr) { u32 num_sensors_for_type, flags, num_active_sensor_types = 0, arr_size = 0, *curr_arr; u32 sensors_by_type_next_index[HWMON_NR_SENSOR_TYPES] = {0}; u32 *sensors_by_type[HWMON_NR_SENSOR_TYPES] = {NULL}; struct hwmon_channel_info **channels_info; u32 counts[HWMON_NR_SENSOR_TYPES] = {0}; enum hwmon_sensor_types type; int rc, i, j; for (i = 0 ; i < CPUCP_MAX_SENSORS ; i++) { type = le32_to_cpu(sensors_arr[i].type); if ((type == 0) && (sensors_arr[i].flags == 0)) break; if (type >= HWMON_NR_SENSOR_TYPES) { dev_err_ratelimited(hdev->dev, "Got wrong sensor type %d from device\n", type); return -EINVAL; } counts[type]++; arr_size++; } for (i = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++) { if (counts[i] == 0) continue; num_sensors_for_type = counts[i] + 1; dev_dbg(hdev->dev, "num_sensors_for_type %d = %d\n", i, num_sensors_for_type); curr_arr = kcalloc(num_sensors_for_type, sizeof(*curr_arr), GFP_KERNEL); if (!curr_arr) { rc = -ENOMEM; goto sensors_type_err; } num_active_sensor_types++; sensors_by_type[i] = curr_arr; } for (i = 0 ; i < arr_size ; i++) { type = le32_to_cpu(sensors_arr[i].type); curr_arr = sensors_by_type[type]; flags = adjust_hwmon_flags(hdev, type, le32_to_cpu(sensors_arr[i].flags)); curr_arr[sensors_by_type_next_index[type]++] = flags; } channels_info = kcalloc(num_active_sensor_types + 1, sizeof(struct hwmon_channel_info *), GFP_KERNEL); if (!channels_info) { rc = -ENOMEM; goto channels_info_array_err; } for (i = 0 ; i < num_active_sensor_types ; i++) { channels_info[i] = kzalloc(sizeof(*channels_info[i]), GFP_KERNEL); if (!channels_info[i]) { rc = -ENOMEM; goto channel_info_err; } } for (i = 0, j = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++) { if (!sensors_by_type[i]) continue; channels_info[j]->type = i; channels_info[j]->config = sensors_by_type[i]; j++; } hdev->hl_chip_info->info = (const struct hwmon_channel_info **)channels_info; return 0; channel_info_err: for (i = 0 ; i < num_active_sensor_types ; i++) { if (channels_info[i]) { kfree(channels_info[i]->config); kfree(channels_info[i]); } } kfree(channels_info); channels_info_array_err: sensors_type_err: for (i = 0 ; i < HWMON_NR_SENSOR_TYPES ; i++) kfree(sensors_by_type[i]); return rc; } static int hl_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct hl_device *hdev = dev_get_drvdata(dev); bool use_cpucp_enum; u32 cpucp_attr; int rc; if (!hl_device_operational(hdev, NULL)) return -ENODEV; use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: cpucp_attr = cpucp_temp_input; break; case hwmon_temp_max: cpucp_attr = cpucp_temp_max; break; case hwmon_temp_crit: cpucp_attr = cpucp_temp_crit; break; case hwmon_temp_max_hyst: cpucp_attr = cpucp_temp_max_hyst; break; case hwmon_temp_crit_hyst: cpucp_attr = cpucp_temp_crit_hyst; break; case hwmon_temp_offset: cpucp_attr = cpucp_temp_offset; break; case hwmon_temp_highest: cpucp_attr = cpucp_temp_highest; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_temperature(hdev, channel, cpucp_attr, val); else rc = hl_get_temperature(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_in: switch (attr) { case hwmon_in_input: cpucp_attr = cpucp_in_input; break; case hwmon_in_min: cpucp_attr = cpucp_in_min; break; case hwmon_in_max: cpucp_attr = cpucp_in_max; break; case hwmon_in_highest: cpucp_attr = cpucp_in_highest; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_voltage(hdev, channel, cpucp_attr, val); else rc = hl_get_voltage(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_curr: switch (attr) { case hwmon_curr_input: cpucp_attr = cpucp_curr_input; break; case hwmon_curr_min: cpucp_attr = cpucp_curr_min; break; case hwmon_curr_max: cpucp_attr = cpucp_curr_max; break; case hwmon_curr_highest: cpucp_attr = cpucp_curr_highest; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_current(hdev, channel, cpucp_attr, val); else rc = hl_get_current(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_fan: switch (attr) { case hwmon_fan_input: cpucp_attr = cpucp_fan_input; break; case hwmon_fan_min: cpucp_attr = cpucp_fan_min; break; case hwmon_fan_max: cpucp_attr = cpucp_fan_max; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_fan_speed(hdev, channel, cpucp_attr, val); else rc = hl_get_fan_speed(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_pwm: switch (attr) { case hwmon_pwm_input: cpucp_attr = cpucp_pwm_input; break; case hwmon_pwm_enable: cpucp_attr = cpucp_pwm_enable; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_pwm_info(hdev, channel, cpucp_attr, val); else /* no need for fixup as pwm was aligned from day 1 */ rc = hl_get_pwm_info(hdev, channel, attr, val); break; case hwmon_power: switch (attr) { case hwmon_power_input: cpucp_attr = CPUCP_POWER_INPUT; break; case hwmon_power_input_highest: cpucp_attr = CPUCP_POWER_INPUT_HIGHEST; break; default: return -EINVAL; } if (use_cpucp_enum) rc = hl_get_power(hdev, channel, cpucp_attr, val); else rc = hl_get_power(hdev, channel, fixup_attr_legacy_fw(attr), val); break; default: return -EINVAL; } return rc; } static int hl_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct hl_device *hdev = dev_get_drvdata(dev); u32 cpucp_attr; bool use_cpucp_enum = (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_MAP_HWMON_EN) ? true : false; if (!hl_device_operational(hdev, NULL)) return -ENODEV; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_offset: cpucp_attr = cpucp_temp_offset; break; case hwmon_temp_reset_history: cpucp_attr = cpucp_temp_reset_history; break; default: return -EINVAL; } if (use_cpucp_enum) hl_set_temperature(hdev, channel, cpucp_attr, val); else hl_set_temperature(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_pwm: switch (attr) { case hwmon_pwm_input: cpucp_attr = cpucp_pwm_input; break; case hwmon_pwm_enable: cpucp_attr = cpucp_pwm_enable; break; default: return -EINVAL; } if (use_cpucp_enum) hl_set_pwm_info(hdev, channel, cpucp_attr, val); else /* no need for fixup as pwm was aligned from day 1 */ hl_set_pwm_info(hdev, channel, attr, val); break; case hwmon_in: switch (attr) { case hwmon_in_reset_history: cpucp_attr = cpucp_in_reset_history; break; default: return -EINVAL; } if (use_cpucp_enum) hl_set_voltage(hdev, channel, cpucp_attr, val); else hl_set_voltage(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_curr: switch (attr) { case hwmon_curr_reset_history: cpucp_attr = cpucp_curr_reset_history; break; default: return -EINVAL; } if (use_cpucp_enum) hl_set_current(hdev, channel, cpucp_attr, val); else hl_set_current(hdev, channel, fixup_attr_legacy_fw(attr), val); break; case hwmon_power: switch (attr) { case hwmon_power_reset_history: cpucp_attr = CPUCP_POWER_RESET_INPUT_HISTORY; break; default: return -EINVAL; } if (use_cpucp_enum) hl_set_power(hdev, channel, cpucp_attr, val); else hl_set_power(hdev, channel, fixup_attr_legacy_fw(attr), val); break; default: return -EINVAL; } return 0; } static umode_t hl_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: case hwmon_temp_max: case hwmon_temp_max_hyst: case hwmon_temp_crit: case hwmon_temp_crit_hyst: case hwmon_temp_highest: return 0444; case hwmon_temp_offset: return 0644; case hwmon_temp_reset_history: return 0200; } break; case hwmon_in: switch (attr) { case hwmon_in_input: case hwmon_in_min: case hwmon_in_max: case hwmon_in_highest: return 0444; case hwmon_in_reset_history: return 0200; } break; case hwmon_curr: switch (attr) { case hwmon_curr_input: case hwmon_curr_min: case hwmon_curr_max: case hwmon_curr_highest: return 0444; case hwmon_curr_reset_history: return 0200; } break; case hwmon_fan: switch (attr) { case hwmon_fan_input: case hwmon_fan_min: case hwmon_fan_max: return 0444; } break; case hwmon_pwm: switch (attr) { case hwmon_pwm_input: case hwmon_pwm_enable: return 0644; } break; case hwmon_power: switch (attr) { case hwmon_power_input: case hwmon_power_input_highest: return 0444; case hwmon_power_reset_history: return 0200; } break; default: break; } return 0; } static const struct hwmon_ops hl_hwmon_ops = { .is_visible = hl_is_visible, .read = hl_read, .write = hl_write }; int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEMPERATURE_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get temperature from sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value) { struct cpucp_packet pkt; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEMPERATURE_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); pkt.value = __cpu_to_le64(value); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err_ratelimited(hdev->dev, "Failed to set temperature of sensor %d, error %d\n", sensor_index, rc); return rc; } int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_VOLTAGE_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get voltage from sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_CURRENT_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get current from sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_FAN_SPEED_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get fan speed from sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_PWM_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get pwm info from sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value) { struct cpucp_packet pkt; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_PWM_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); pkt.value = cpu_to_le64(value); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err_ratelimited(hdev->dev, "Failed to set pwm info to sensor %d, error %d\n", sensor_index, rc); } int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value) { struct cpucp_packet pkt; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_VOLTAGE_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); pkt.value = __cpu_to_le64(value); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err_ratelimited(hdev->dev, "Failed to set voltage of sensor %d, error %d\n", sensor_index, rc); return rc; } int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value) { struct cpucp_packet pkt; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_CURRENT_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); pkt.value = __cpu_to_le64(value); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err_ratelimited(hdev->dev, "Failed to set current of sensor %d, error %d\n", sensor_index, rc); return rc; } int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value) { struct cpucp_packet pkt; struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; memset(&pkt, 0, sizeof(pkt)); if (prop->use_get_power_for_reset_history) pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); else pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); pkt.value = __cpu_to_le64(value); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err_ratelimited(hdev->dev, "Failed to set power of sensor %d, error %d\n", sensor_index, rc); return rc; } int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.sensor_index = __cpu_to_le16(sensor_index); pkt.type = __cpu_to_le16(attr); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); *value = (long) result; if (rc) { dev_err_ratelimited(hdev->dev, "Failed to get power of sensor %d, error %d\n", sensor_index, rc); *value = 0; } return rc; } int hl_hwmon_init(struct hl_device *hdev) { struct device *dev = hdev->pdev ? &hdev->pdev->dev : hdev->dev; struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if ((hdev->hwmon_initialized) || !(hdev->cpu_queues_enable)) return 0; if (hdev->hl_chip_info->info) { hdev->hl_chip_info->ops = &hl_hwmon_ops; hdev->hwmon_dev = hwmon_device_register_with_info(dev, prop->cpucp_info.card_name, hdev, hdev->hl_chip_info, NULL); if (IS_ERR(hdev->hwmon_dev)) { rc = PTR_ERR(hdev->hwmon_dev); dev_err(hdev->dev, "Unable to register hwmon device: %d\n", rc); return rc; } dev_info(hdev->dev, "%s: add sensors information\n", dev_name(hdev->hwmon_dev)); hdev->hwmon_initialized = true; } else { dev_info(hdev->dev, "no available sensors\n"); } return 0; } void hl_hwmon_fini(struct hl_device *hdev) { if (!hdev->hwmon_initialized) return; hwmon_device_unregister(hdev->hwmon_dev); } void hl_hwmon_release_resources(struct hl_device *hdev) { const struct hwmon_channel_info * const *channel_info_arr; int i = 0; if (!hdev->hl_chip_info->info) return; channel_info_arr = hdev->hl_chip_info->info; while (channel_info_arr[i]) { kfree(channel_info_arr[i]->config); kfree(channel_info_arr[i]); i++; } kfree(channel_info_arr); hdev->hl_chip_info->info = NULL; }