// SPDX-License-Identifier: GPL-2.0 /* * hosting IBM Z kernel virtual machines (s390x) * * Copyright IBM Corp. 2008, 2020 * * Author(s): Carsten Otte * Christian Borntraeger * Christian Ehrhardt * Jason J. Herne */ #define KMSG_COMPONENT "kvm-s390" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm-s390.h" #include "gaccess.h" #include "pci.h" #define CREATE_TRACE_POINTS #include "trace.h" #include "trace-s390.h" #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ #define LOCAL_IRQS 32 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ (KVM_MAX_VCPUS + LOCAL_IRQS)) const struct _kvm_stats_desc kvm_vm_stats_desc[] = { KVM_GENERIC_VM_STATS(), STATS_DESC_COUNTER(VM, inject_io), STATS_DESC_COUNTER(VM, inject_float_mchk), STATS_DESC_COUNTER(VM, inject_pfault_done), STATS_DESC_COUNTER(VM, inject_service_signal), STATS_DESC_COUNTER(VM, inject_virtio), STATS_DESC_COUNTER(VM, aen_forward), STATS_DESC_COUNTER(VM, gmap_shadow_reuse), STATS_DESC_COUNTER(VM, gmap_shadow_create), STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), }; const struct kvm_stats_header kvm_vm_stats_header = { .name_size = KVM_STATS_NAME_SIZE, .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), .id_offset = sizeof(struct kvm_stats_header), .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + sizeof(kvm_vm_stats_desc), }; const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { KVM_GENERIC_VCPU_STATS(), STATS_DESC_COUNTER(VCPU, exit_userspace), STATS_DESC_COUNTER(VCPU, exit_null), STATS_DESC_COUNTER(VCPU, exit_external_request), STATS_DESC_COUNTER(VCPU, exit_io_request), STATS_DESC_COUNTER(VCPU, exit_external_interrupt), STATS_DESC_COUNTER(VCPU, exit_stop_request), STATS_DESC_COUNTER(VCPU, exit_validity), STATS_DESC_COUNTER(VCPU, exit_instruction), STATS_DESC_COUNTER(VCPU, exit_pei), STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), STATS_DESC_COUNTER(VCPU, instruction_lctl), STATS_DESC_COUNTER(VCPU, instruction_lctlg), STATS_DESC_COUNTER(VCPU, instruction_stctl), STATS_DESC_COUNTER(VCPU, instruction_stctg), STATS_DESC_COUNTER(VCPU, exit_program_interruption), STATS_DESC_COUNTER(VCPU, exit_instr_and_program), STATS_DESC_COUNTER(VCPU, exit_operation_exception), STATS_DESC_COUNTER(VCPU, deliver_ckc), STATS_DESC_COUNTER(VCPU, deliver_cputm), STATS_DESC_COUNTER(VCPU, deliver_external_call), STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), STATS_DESC_COUNTER(VCPU, deliver_service_signal), STATS_DESC_COUNTER(VCPU, deliver_virtio), STATS_DESC_COUNTER(VCPU, deliver_stop_signal), STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), STATS_DESC_COUNTER(VCPU, deliver_restart_signal), STATS_DESC_COUNTER(VCPU, deliver_program), STATS_DESC_COUNTER(VCPU, deliver_io), STATS_DESC_COUNTER(VCPU, deliver_machine_check), STATS_DESC_COUNTER(VCPU, exit_wait_state), STATS_DESC_COUNTER(VCPU, inject_ckc), STATS_DESC_COUNTER(VCPU, inject_cputm), STATS_DESC_COUNTER(VCPU, inject_external_call), STATS_DESC_COUNTER(VCPU, inject_emergency_signal), STATS_DESC_COUNTER(VCPU, inject_mchk), STATS_DESC_COUNTER(VCPU, inject_pfault_init), STATS_DESC_COUNTER(VCPU, inject_program), STATS_DESC_COUNTER(VCPU, inject_restart), STATS_DESC_COUNTER(VCPU, inject_set_prefix), STATS_DESC_COUNTER(VCPU, inject_stop_signal), STATS_DESC_COUNTER(VCPU, instruction_epsw), STATS_DESC_COUNTER(VCPU, instruction_gs), STATS_DESC_COUNTER(VCPU, instruction_io_other), STATS_DESC_COUNTER(VCPU, instruction_lpsw), STATS_DESC_COUNTER(VCPU, instruction_lpswe), STATS_DESC_COUNTER(VCPU, instruction_lpswey), STATS_DESC_COUNTER(VCPU, instruction_pfmf), STATS_DESC_COUNTER(VCPU, instruction_ptff), STATS_DESC_COUNTER(VCPU, instruction_sck), STATS_DESC_COUNTER(VCPU, instruction_sckpf), STATS_DESC_COUNTER(VCPU, instruction_stidp), STATS_DESC_COUNTER(VCPU, instruction_spx), STATS_DESC_COUNTER(VCPU, instruction_stpx), STATS_DESC_COUNTER(VCPU, instruction_stap), STATS_DESC_COUNTER(VCPU, instruction_iske), STATS_DESC_COUNTER(VCPU, instruction_ri), STATS_DESC_COUNTER(VCPU, instruction_rrbe), STATS_DESC_COUNTER(VCPU, instruction_sske), STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), STATS_DESC_COUNTER(VCPU, instruction_stsi), STATS_DESC_COUNTER(VCPU, instruction_stfl), STATS_DESC_COUNTER(VCPU, instruction_tb), STATS_DESC_COUNTER(VCPU, instruction_tpi), STATS_DESC_COUNTER(VCPU, instruction_tprot), STATS_DESC_COUNTER(VCPU, instruction_tsch), STATS_DESC_COUNTER(VCPU, instruction_sie), STATS_DESC_COUNTER(VCPU, instruction_essa), STATS_DESC_COUNTER(VCPU, instruction_sthyi), STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), STATS_DESC_COUNTER(VCPU, instruction_sigp_start), STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), STATS_DESC_COUNTER(VCPU, diag_9c_ignored), STATS_DESC_COUNTER(VCPU, diag_9c_forward), STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), STATS_DESC_COUNTER(VCPU, pfault_sync) }; const struct kvm_stats_header kvm_vcpu_stats_header = { .name_size = KVM_STATS_NAME_SIZE, .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), .id_offset = sizeof(struct kvm_stats_header), .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + sizeof(kvm_vcpu_stats_desc), }; /* allow nested virtualization in KVM (if enabled by user space) */ static int nested; module_param(nested, int, S_IRUGO); MODULE_PARM_DESC(nested, "Nested virtualization support"); /* allow 1m huge page guest backing, if !nested */ static int hpage; module_param(hpage, int, 0444); MODULE_PARM_DESC(hpage, "1m huge page backing support"); /* maximum percentage of steal time for polling. >100 is treated like 100 */ static u8 halt_poll_max_steal = 10; module_param(halt_poll_max_steal, byte, 0644); MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); /* if set to true, the GISA will be initialized and used if available */ static bool use_gisa = true; module_param(use_gisa, bool, 0644); MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); /* maximum diag9c forwarding per second */ unsigned int diag9c_forwarding_hz; module_param(diag9c_forwarding_hz, uint, 0644); MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); /* * allow asynchronous deinit for protected guests; enable by default since * the feature is opt-in anyway */ static int async_destroy = 1; module_param(async_destroy, int, 0444); MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); /* * For now we handle at most 16 double words as this is what the s390 base * kernel handles and stores in the prefix page. If we ever need to go beyond * this, this requires changes to code, but the external uapi can stay. */ #define SIZE_INTERNAL 16 /* * Base feature mask that defines default mask for facilities. Consists of the * defines in FACILITIES_KVM and the non-hypervisor managed bits. */ static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; /* * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL * and defines the facilities that can be enabled via a cpu model. */ static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; static unsigned long kvm_s390_fac_size(void) { BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > sizeof(stfle_fac_list)); return SIZE_INTERNAL; } /* available cpu features supported by kvm */ static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); /* available subfunctions indicated via query / "test bit" */ static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; static struct gmap_notifier gmap_notifier; static struct gmap_notifier vsie_gmap_notifier; debug_info_t *kvm_s390_dbf; debug_info_t *kvm_s390_dbf_uv; /* Section: not file related */ /* forward declarations */ static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, unsigned long end); static int sca_switch_to_extended(struct kvm *kvm); static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) { u8 delta_idx = 0; /* * The TOD jumps by delta, we have to compensate this by adding * -delta to the epoch. */ delta = -delta; /* sign-extension - we're adding to signed values below */ if ((s64)delta < 0) delta_idx = -1; scb->epoch += delta; if (scb->ecd & ECD_MEF) { scb->epdx += delta_idx; if (scb->epoch < delta) scb->epdx += 1; } } /* * This callback is executed during stop_machine(). All CPUs are therefore * temporarily stopped. In order not to change guest behavior, we have to * disable preemption whenever we touch the epoch of kvm and the VCPUs, * so a CPU won't be stopped while calculating with the epoch. */ static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, void *v) { struct kvm *kvm; struct kvm_vcpu *vcpu; unsigned long i; unsigned long long *delta = v; list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); if (i == 0) { kvm->arch.epoch = vcpu->arch.sie_block->epoch; kvm->arch.epdx = vcpu->arch.sie_block->epdx; } if (vcpu->arch.cputm_enabled) vcpu->arch.cputm_start += *delta; if (vcpu->arch.vsie_block) kvm_clock_sync_scb(vcpu->arch.vsie_block, *delta); } } return NOTIFY_OK; } static struct notifier_block kvm_clock_notifier = { .notifier_call = kvm_clock_sync, }; static void allow_cpu_feat(unsigned long nr) { set_bit_inv(nr, kvm_s390_available_cpu_feat); } static inline int plo_test_bit(unsigned char nr) { unsigned long function = (unsigned long)nr | 0x100; int cc; asm volatile( " lgr 0,%[function]\n" /* Parameter registers are ignored for "test bit" */ " plo 0,0,0,0(0)\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : [function] "d" (function) : "cc", "0"); return cc == 0; } static __always_inline void __insn32_query(unsigned int opcode, u8 *query) { asm volatile( " lghi 0,0\n" " lgr 1,%[query]\n" /* Parameter registers are ignored */ " .insn rrf,%[opc] << 16,2,4,6,0\n" : : [query] "d" ((unsigned long)query), [opc] "i" (opcode) : "cc", "memory", "0", "1"); } #define INSN_SORTL 0xb938 #define INSN_DFLTCC 0xb939 static void __init kvm_s390_cpu_feat_init(void) { int i; for (i = 0; i < 256; ++i) { if (plo_test_bit(i)) kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); } if (test_facility(28)) /* TOD-clock steering */ ptff(kvm_s390_available_subfunc.ptff, sizeof(kvm_s390_available_subfunc.ptff), PTFF_QAF); if (test_facility(17)) { /* MSA */ __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) kvm_s390_available_subfunc.kmac); __cpacf_query(CPACF_KMC, (cpacf_mask_t *) kvm_s390_available_subfunc.kmc); __cpacf_query(CPACF_KM, (cpacf_mask_t *) kvm_s390_available_subfunc.km); __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) kvm_s390_available_subfunc.kimd); __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) kvm_s390_available_subfunc.klmd); } if (test_facility(76)) /* MSA3 */ __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) kvm_s390_available_subfunc.pckmo); if (test_facility(77)) { /* MSA4 */ __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) kvm_s390_available_subfunc.kmctr); __cpacf_query(CPACF_KMF, (cpacf_mask_t *) kvm_s390_available_subfunc.kmf); __cpacf_query(CPACF_KMO, (cpacf_mask_t *) kvm_s390_available_subfunc.kmo); __cpacf_query(CPACF_PCC, (cpacf_mask_t *) kvm_s390_available_subfunc.pcc); } if (test_facility(57)) /* MSA5 */ __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) kvm_s390_available_subfunc.ppno); if (test_facility(146)) /* MSA8 */ __cpacf_query(CPACF_KMA, (cpacf_mask_t *) kvm_s390_available_subfunc.kma); if (test_facility(155)) /* MSA9 */ __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) kvm_s390_available_subfunc.kdsa); if (test_facility(150)) /* SORTL */ __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); if (test_facility(151)) /* DFLTCC */ __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); if (MACHINE_HAS_ESOP) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); /* * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). */ if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || !test_facility(3) || !nested) return; allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); if (sclp.has_64bscao) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); if (sclp.has_siif) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); if (sclp.has_gpere) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); if (sclp.has_gsls) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); if (sclp.has_ib) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); if (sclp.has_cei) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); if (sclp.has_ibs) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); if (sclp.has_kss) allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); /* * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make * all skey handling functions read/set the skey from the PGSTE * instead of the real storage key. * * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make * pages being detected as preserved although they are resident. * * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. * * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be * correctly shadowed. We can do that for the PGSTE but not for PTE.I. * * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We * cannot easily shadow the SCA because of the ipte lock. */ } static int __init __kvm_s390_init(void) { int rc = -ENOMEM; kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); if (!kvm_s390_dbf) return -ENOMEM; kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); if (!kvm_s390_dbf_uv) goto err_kvm_uv; if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) goto err_debug_view; kvm_s390_cpu_feat_init(); /* Register floating interrupt controller interface. */ rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); if (rc) { pr_err("A FLIC registration call failed with rc=%d\n", rc); goto err_flic; } if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { rc = kvm_s390_pci_init(); if (rc) { pr_err("Unable to allocate AIFT for PCI\n"); goto err_pci; } } rc = kvm_s390_gib_init(GAL_ISC); if (rc) goto err_gib; gmap_notifier.notifier_call = kvm_gmap_notifier; gmap_register_pte_notifier(&gmap_notifier); vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; gmap_register_pte_notifier(&vsie_gmap_notifier); atomic_notifier_chain_register(&s390_epoch_delta_notifier, &kvm_clock_notifier); return 0; err_gib: if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) kvm_s390_pci_exit(); err_pci: err_flic: err_debug_view: debug_unregister(kvm_s390_dbf_uv); err_kvm_uv: debug_unregister(kvm_s390_dbf); return rc; } static void __kvm_s390_exit(void) { gmap_unregister_pte_notifier(&gmap_notifier); gmap_unregister_pte_notifier(&vsie_gmap_notifier); atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, &kvm_clock_notifier); kvm_s390_gib_destroy(); if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) kvm_s390_pci_exit(); debug_unregister(kvm_s390_dbf); debug_unregister(kvm_s390_dbf_uv); } /* Section: device related */ long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { if (ioctl == KVM_S390_ENABLE_SIE) return s390_enable_sie(); return -EINVAL; } int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r; switch (ext) { case KVM_CAP_S390_PSW: case KVM_CAP_S390_GMAP: case KVM_CAP_SYNC_MMU: #ifdef CONFIG_KVM_S390_UCONTROL case KVM_CAP_S390_UCONTROL: #endif case KVM_CAP_ASYNC_PF: case KVM_CAP_SYNC_REGS: case KVM_CAP_ONE_REG: case KVM_CAP_ENABLE_CAP: case KVM_CAP_S390_CSS_SUPPORT: case KVM_CAP_IOEVENTFD: case KVM_CAP_S390_IRQCHIP: case KVM_CAP_VM_ATTRIBUTES: case KVM_CAP_MP_STATE: case KVM_CAP_IMMEDIATE_EXIT: case KVM_CAP_S390_INJECT_IRQ: case KVM_CAP_S390_USER_SIGP: case KVM_CAP_S390_USER_STSI: case KVM_CAP_S390_SKEYS: case KVM_CAP_S390_IRQ_STATE: case KVM_CAP_S390_USER_INSTR0: case KVM_CAP_S390_CMMA_MIGRATION: case KVM_CAP_S390_AIS: case KVM_CAP_S390_AIS_MIGRATION: case KVM_CAP_S390_VCPU_RESETS: case KVM_CAP_SET_GUEST_DEBUG: case KVM_CAP_S390_DIAG318: case KVM_CAP_IRQFD_RESAMPLE: r = 1; break; case KVM_CAP_SET_GUEST_DEBUG2: r = KVM_GUESTDBG_VALID_MASK; break; case KVM_CAP_S390_HPAGE_1M: r = 0; if (hpage && !(kvm && kvm_is_ucontrol(kvm))) r = 1; break; case KVM_CAP_S390_MEM_OP: r = MEM_OP_MAX_SIZE; break; case KVM_CAP_S390_MEM_OP_EXTENSION: /* * Flag bits indicating which extensions are supported. * If r > 0, the base extension must also be supported/indicated, * in order to maintain backwards compatibility. */ r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; break; case KVM_CAP_NR_VCPUS: case KVM_CAP_MAX_VCPUS: case KVM_CAP_MAX_VCPU_ID: r = KVM_S390_BSCA_CPU_SLOTS; if (!kvm_s390_use_sca_entries()) r = KVM_MAX_VCPUS; else if (sclp.has_esca && sclp.has_64bscao) r = KVM_S390_ESCA_CPU_SLOTS; if (ext == KVM_CAP_NR_VCPUS) r = min_t(unsigned int, num_online_cpus(), r); break; case KVM_CAP_S390_COW: r = MACHINE_HAS_ESOP; break; case KVM_CAP_S390_VECTOR_REGISTERS: r = test_facility(129); break; case KVM_CAP_S390_RI: r = test_facility(64); break; case KVM_CAP_S390_GS: r = test_facility(133); break; case KVM_CAP_S390_BPB: r = test_facility(82); break; case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: r = async_destroy && is_prot_virt_host(); break; case KVM_CAP_S390_PROTECTED: r = is_prot_virt_host(); break; case KVM_CAP_S390_PROTECTED_DUMP: { u64 pv_cmds_dump[] = { BIT_UVC_CMD_DUMP_INIT, BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, BIT_UVC_CMD_DUMP_CPU, BIT_UVC_CMD_DUMP_COMPLETE, }; int i; r = is_prot_virt_host(); for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { if (!test_bit_inv(pv_cmds_dump[i], (unsigned long *)&uv_info.inst_calls_list)) { r = 0; break; } } break; } case KVM_CAP_S390_ZPCI_OP: r = kvm_s390_pci_interp_allowed(); break; case KVM_CAP_S390_CPU_TOPOLOGY: r = test_facility(11); break; default: r = 0; } return r; } void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { int i; gfn_t cur_gfn, last_gfn; unsigned long gaddr, vmaddr; struct gmap *gmap = kvm->arch.gmap; DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); /* Loop over all guest segments */ cur_gfn = memslot->base_gfn; last_gfn = memslot->base_gfn + memslot->npages; for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { gaddr = gfn_to_gpa(cur_gfn); vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); if (kvm_is_error_hva(vmaddr)) continue; bitmap_zero(bitmap, _PAGE_ENTRIES); gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); for (i = 0; i < _PAGE_ENTRIES; i++) { if (test_bit(i, bitmap)) mark_page_dirty(kvm, cur_gfn + i); } if (fatal_signal_pending(current)) return; cond_resched(); } } /* Section: vm related */ static void sca_del_vcpu(struct kvm_vcpu *vcpu); /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r; unsigned long n; struct kvm_memory_slot *memslot; int is_dirty; if (kvm_is_ucontrol(kvm)) return -EINVAL; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_USER_MEM_SLOTS) goto out; r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); if (r) goto out; /* Clear the dirty log */ if (is_dirty) { n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void icpt_operexc_on_all_vcpus(struct kvm *kvm) { unsigned long i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); } } int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_S390_IRQCHIP: VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); kvm->arch.use_irqchip = 1; r = 0; break; case KVM_CAP_S390_USER_SIGP: VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); kvm->arch.user_sigp = 1; r = 0; break; case KVM_CAP_S390_VECTOR_REGISTERS: mutex_lock(&kvm->lock); if (kvm->created_vcpus) { r = -EBUSY; } else if (cpu_has_vx()) { set_kvm_facility(kvm->arch.model.fac_mask, 129); set_kvm_facility(kvm->arch.model.fac_list, 129); if (test_facility(134)) { set_kvm_facility(kvm->arch.model.fac_mask, 134); set_kvm_facility(kvm->arch.model.fac_list, 134); } if (test_facility(135)) { set_kvm_facility(kvm->arch.model.fac_mask, 135); set_kvm_facility(kvm->arch.model.fac_list, 135); } if (test_facility(148)) { set_kvm_facility(kvm->arch.model.fac_mask, 148); set_kvm_facility(kvm->arch.model.fac_list, 148); } if (test_facility(152)) { set_kvm_facility(kvm->arch.model.fac_mask, 152); set_kvm_facility(kvm->arch.model.fac_list, 152); } if (test_facility(192)) { set_kvm_facility(kvm->arch.model.fac_mask, 192); set_kvm_facility(kvm->arch.model.fac_list, 192); } r = 0; } else r = -EINVAL; mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", r ? "(not available)" : "(success)"); break; case KVM_CAP_S390_RI: r = -EINVAL; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { r = -EBUSY; } else if (test_facility(64)) { set_kvm_facility(kvm->arch.model.fac_mask, 64); set_kvm_facility(kvm->arch.model.fac_list, 64); r = 0; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", r ? "(not available)" : "(success)"); break; case KVM_CAP_S390_AIS: mutex_lock(&kvm->lock); if (kvm->created_vcpus) { r = -EBUSY; } else { set_kvm_facility(kvm->arch.model.fac_mask, 72); set_kvm_facility(kvm->arch.model.fac_list, 72); r = 0; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: AIS %s", r ? "(not available)" : "(success)"); break; case KVM_CAP_S390_GS: r = -EINVAL; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { r = -EBUSY; } else if (test_facility(133)) { set_kvm_facility(kvm->arch.model.fac_mask, 133); set_kvm_facility(kvm->arch.model.fac_list, 133); r = 0; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", r ? "(not available)" : "(success)"); break; case KVM_CAP_S390_HPAGE_1M: mutex_lock(&kvm->lock); if (kvm->created_vcpus) r = -EBUSY; else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) r = -EINVAL; else { r = 0; mmap_write_lock(kvm->mm); kvm->mm->context.allow_gmap_hpage_1m = 1; mmap_write_unlock(kvm->mm); /* * We might have to create fake 4k page * tables. To avoid that the hardware works on * stale PGSTEs, we emulate these instructions. */ kvm->arch.use_skf = 0; kvm->arch.use_pfmfi = 0; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", r ? "(not available)" : "(success)"); break; case KVM_CAP_S390_USER_STSI: VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); kvm->arch.user_stsi = 1; r = 0; break; case KVM_CAP_S390_USER_INSTR0: VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); kvm->arch.user_instr0 = 1; icpt_operexc_on_all_vcpus(kvm); r = 0; break; case KVM_CAP_S390_CPU_TOPOLOGY: r = -EINVAL; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { r = -EBUSY; } else if (test_facility(11)) { set_kvm_facility(kvm->arch.model.fac_mask, 11); set_kvm_facility(kvm->arch.model.fac_list, 11); r = 0; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", r ? "(not available)" : "(success)"); break; default: r = -EINVAL; break; } return r; } static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; switch (attr->attr) { case KVM_S390_VM_MEM_LIMIT_SIZE: ret = 0; VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", kvm->arch.mem_limit); if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) ret = -EFAULT; break; default: ret = -ENXIO; break; } return ret; } static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; unsigned int idx; switch (attr->attr) { case KVM_S390_VM_MEM_ENABLE_CMMA: ret = -ENXIO; if (!sclp.has_cmma) break; VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); mutex_lock(&kvm->lock); if (kvm->created_vcpus) ret = -EBUSY; else if (kvm->mm->context.allow_gmap_hpage_1m) ret = -EINVAL; else { kvm->arch.use_cmma = 1; /* Not compatible with cmma. */ kvm->arch.use_pfmfi = 0; ret = 0; } mutex_unlock(&kvm->lock); break; case KVM_S390_VM_MEM_CLR_CMMA: ret = -ENXIO; if (!sclp.has_cmma) break; ret = -EINVAL; if (!kvm->arch.use_cmma) break; VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); mutex_lock(&kvm->lock); idx = srcu_read_lock(&kvm->srcu); s390_reset_cmma(kvm->arch.gmap->mm); srcu_read_unlock(&kvm->srcu, idx); mutex_unlock(&kvm->lock); ret = 0; break; case KVM_S390_VM_MEM_LIMIT_SIZE: { unsigned long new_limit; if (kvm_is_ucontrol(kvm)) return -EINVAL; if (get_user(new_limit, (u64 __user *)attr->addr)) return -EFAULT; if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && new_limit > kvm->arch.mem_limit) return -E2BIG; if (!new_limit) return -EINVAL; /* gmap_create takes last usable address */ if (new_limit != KVM_S390_NO_MEM_LIMIT) new_limit -= 1; ret = -EBUSY; mutex_lock(&kvm->lock); if (!kvm->created_vcpus) { /* gmap_create will round the limit up */ struct gmap *new = gmap_create(current->mm, new_limit); if (!new) { ret = -ENOMEM; } else { gmap_remove(kvm->arch.gmap); new->private = kvm; kvm->arch.gmap = new; ret = 0; } } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); VM_EVENT(kvm, 3, "New guest asce: 0x%pK", (void *) kvm->arch.gmap->asce); break; } default: ret = -ENXIO; break; } return ret; } static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) { struct kvm_vcpu *vcpu; unsigned long i; kvm_s390_vcpu_block_all(kvm); kvm_for_each_vcpu(i, vcpu, kvm) { kvm_s390_vcpu_crypto_setup(vcpu); /* recreate the shadow crycb by leaving the VSIE handler */ kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); } kvm_s390_vcpu_unblock_all(kvm); } static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) { mutex_lock(&kvm->lock); switch (attr->attr) { case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: if (!test_kvm_facility(kvm, 76)) { mutex_unlock(&kvm->lock); return -EINVAL; } get_random_bytes( kvm->arch.crypto.crycb->aes_wrapping_key_mask, sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); kvm->arch.crypto.aes_kw = 1; VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); break; case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: if (!test_kvm_facility(kvm, 76)) { mutex_unlock(&kvm->lock); return -EINVAL; } get_random_bytes( kvm->arch.crypto.crycb->dea_wrapping_key_mask, sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); kvm->arch.crypto.dea_kw = 1; VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); break; case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: if (!test_kvm_facility(kvm, 76)) { mutex_unlock(&kvm->lock); return -EINVAL; } kvm->arch.crypto.aes_kw = 0; memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); break; case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: if (!test_kvm_facility(kvm, 76)) { mutex_unlock(&kvm->lock); return -EINVAL; } kvm->arch.crypto.dea_kw = 0; memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); break; case KVM_S390_VM_CRYPTO_ENABLE_APIE: if (!ap_instructions_available()) { mutex_unlock(&kvm->lock); return -EOPNOTSUPP; } kvm->arch.crypto.apie = 1; break; case KVM_S390_VM_CRYPTO_DISABLE_APIE: if (!ap_instructions_available()) { mutex_unlock(&kvm->lock); return -EOPNOTSUPP; } kvm->arch.crypto.apie = 0; break; default: mutex_unlock(&kvm->lock); return -ENXIO; } kvm_s390_vcpu_crypto_reset_all(kvm); mutex_unlock(&kvm->lock); return 0; } static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) { /* Only set the ECB bits after guest requests zPCI interpretation */ if (!vcpu->kvm->arch.use_zpci_interp) return; vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; } void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) { struct kvm_vcpu *vcpu; unsigned long i; lockdep_assert_held(&kvm->lock); if (!kvm_s390_pci_interp_allowed()) return; /* * If host is configured for PCI and the necessary facilities are * available, turn on interpretation for the life of this guest */ kvm->arch.use_zpci_interp = 1; kvm_s390_vcpu_block_all(kvm); kvm_for_each_vcpu(i, vcpu, kvm) { kvm_s390_vcpu_pci_setup(vcpu); kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); } kvm_s390_vcpu_unblock_all(kvm); } static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) { unsigned long cx; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(cx, vcpu, kvm) kvm_s390_sync_request(req, vcpu); } /* * Must be called with kvm->srcu held to avoid races on memslots, and with * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. */ static int kvm_s390_vm_start_migration(struct kvm *kvm) { struct kvm_memory_slot *ms; struct kvm_memslots *slots; unsigned long ram_pages = 0; int bkt; /* migration mode already enabled */ if (kvm->arch.migration_mode) return 0; slots = kvm_memslots(kvm); if (!slots || kvm_memslots_empty(slots)) return -EINVAL; if (!kvm->arch.use_cmma) { kvm->arch.migration_mode = 1; return 0; } /* mark all the pages in active slots as dirty */ kvm_for_each_memslot(ms, bkt, slots) { if (!ms->dirty_bitmap) return -EINVAL; /* * The second half of the bitmap is only used on x86, * and would be wasted otherwise, so we put it to good * use here to keep track of the state of the storage * attributes. */ memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); ram_pages += ms->npages; } atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); kvm->arch.migration_mode = 1; kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); return 0; } /* * Must be called with kvm->slots_lock to avoid races with ourselves and * kvm_s390_vm_start_migration. */ static int kvm_s390_vm_stop_migration(struct kvm *kvm) { /* migration mode already disabled */ if (!kvm->arch.migration_mode) return 0; kvm->arch.migration_mode = 0; if (kvm->arch.use_cmma) kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); return 0; } static int kvm_s390_vm_set_migration(struct kvm *kvm, struct kvm_device_attr *attr) { int res = -ENXIO; mutex_lock(&kvm->slots_lock); switch (attr->attr) { case KVM_S390_VM_MIGRATION_START: res = kvm_s390_vm_start_migration(kvm); break; case KVM_S390_VM_MIGRATION_STOP: res = kvm_s390_vm_stop_migration(kvm); break; default: break; } mutex_unlock(&kvm->slots_lock); return res; } static int kvm_s390_vm_get_migration(struct kvm *kvm, struct kvm_device_attr *attr) { u64 mig = kvm->arch.migration_mode; if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) return -ENXIO; if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) return -EFAULT; return 0; } static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_tod_clock gtod; if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) return -EFAULT; if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) return -EINVAL; __kvm_s390_set_tod_clock(kvm, >od); VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", gtod.epoch_idx, gtod.tod); return 0; } static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) { u8 gtod_high; if (copy_from_user(>od_high, (void __user *)attr->addr, sizeof(gtod_high))) return -EFAULT; if (gtod_high != 0) return -EINVAL; VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); return 0; } static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_tod_clock gtod = { 0 }; if (copy_from_user(>od.tod, (void __user *)attr->addr, sizeof(gtod.tod))) return -EFAULT; __kvm_s390_set_tod_clock(kvm, >od); VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); return 0; } static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; if (attr->flags) return -EINVAL; mutex_lock(&kvm->lock); /* * For protected guests, the TOD is managed by the ultravisor, so trying * to change it will never bring the expected results. */ if (kvm_s390_pv_is_protected(kvm)) { ret = -EOPNOTSUPP; goto out_unlock; } switch (attr->attr) { case KVM_S390_VM_TOD_EXT: ret = kvm_s390_set_tod_ext(kvm, attr); break; case KVM_S390_VM_TOD_HIGH: ret = kvm_s390_set_tod_high(kvm, attr); break; case KVM_S390_VM_TOD_LOW: ret = kvm_s390_set_tod_low(kvm, attr); break; default: ret = -ENXIO; break; } out_unlock: mutex_unlock(&kvm->lock); return ret; } static void kvm_s390_get_tod_clock(struct kvm *kvm, struct kvm_s390_vm_tod_clock *gtod) { union tod_clock clk; preempt_disable(); store_tod_clock_ext(&clk); gtod->tod = clk.tod + kvm->arch.epoch; gtod->epoch_idx = 0; if (test_kvm_facility(kvm, 139)) { gtod->epoch_idx = clk.ei + kvm->arch.epdx; if (gtod->tod < clk.tod) gtod->epoch_idx += 1; } preempt_enable(); } static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_tod_clock gtod; memset(>od, 0, sizeof(gtod)); kvm_s390_get_tod_clock(kvm, >od); if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) return -EFAULT; VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", gtod.epoch_idx, gtod.tod); return 0; } static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) { u8 gtod_high = 0; if (copy_to_user((void __user *)attr->addr, >od_high, sizeof(gtod_high))) return -EFAULT; VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); return 0; } static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) { u64 gtod; gtod = kvm_s390_get_tod_clock_fast(kvm); if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) return -EFAULT; VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); return 0; } static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; if (attr->flags) return -EINVAL; switch (attr->attr) { case KVM_S390_VM_TOD_EXT: ret = kvm_s390_get_tod_ext(kvm, attr); break; case KVM_S390_VM_TOD_HIGH: ret = kvm_s390_get_tod_high(kvm, attr); break; case KVM_S390_VM_TOD_LOW: ret = kvm_s390_get_tod_low(kvm, attr); break; default: ret = -ENXIO; break; } return ret; } static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_processor *proc; u16 lowest_ibc, unblocked_ibc; int ret = 0; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { ret = -EBUSY; goto out; } proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); if (!proc) { ret = -ENOMEM; goto out; } if (!copy_from_user(proc, (void __user *)attr->addr, sizeof(*proc))) { kvm->arch.model.cpuid = proc->cpuid; lowest_ibc = sclp.ibc >> 16 & 0xfff; unblocked_ibc = sclp.ibc & 0xfff; if (lowest_ibc && proc->ibc) { if (proc->ibc > unblocked_ibc) kvm->arch.model.ibc = unblocked_ibc; else if (proc->ibc < lowest_ibc) kvm->arch.model.ibc = lowest_ibc; else kvm->arch.model.ibc = proc->ibc; } memcpy(kvm->arch.model.fac_list, proc->fac_list, S390_ARCH_FAC_LIST_SIZE_BYTE); VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", kvm->arch.model.ibc, kvm->arch.model.cpuid); VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", kvm->arch.model.fac_list[0], kvm->arch.model.fac_list[1], kvm->arch.model.fac_list[2]); } else ret = -EFAULT; kfree(proc); out: mutex_unlock(&kvm->lock); return ret; } static int kvm_s390_set_processor_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_feat data; if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) return -EFAULT; if (!bitmap_subset((unsigned long *) data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS)) return -EINVAL; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { mutex_unlock(&kvm->lock); return -EBUSY; } bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", data.feat[0], data.feat[1], data.feat[2]); return 0; } static int kvm_s390_set_processor_subfunc(struct kvm *kvm, struct kvm_device_attr *attr) { mutex_lock(&kvm->lock); if (kvm->created_vcpus) { mutex_unlock(&kvm->lock); return -EBUSY; } if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, sizeof(struct kvm_s390_vm_cpu_subfunc))) { mutex_unlock(&kvm->lock); return -EFAULT; } mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); return 0; } #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ ( \ ((struct kvm_s390_vm_cpu_uv_feat){ \ .ap = 1, \ .ap_intr = 1, \ }) \ .feat \ ) static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; unsigned long data, filter; filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; if (get_user(data, &ptr->feat)) return -EFAULT; if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) return -EINVAL; mutex_lock(&kvm->lock); if (kvm->created_vcpus) { mutex_unlock(&kvm->lock); return -EBUSY; } kvm->arch.model.uv_feat_guest.feat = data; mutex_unlock(&kvm->lock); VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); return 0; } static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) { int ret = -ENXIO; switch (attr->attr) { case KVM_S390_VM_CPU_PROCESSOR: ret = kvm_s390_set_processor(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_FEAT: ret = kvm_s390_set_processor_feat(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: ret = kvm_s390_set_processor_subfunc(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: ret = kvm_s390_set_uv_feat(kvm, attr); break; } return ret; } static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_processor *proc; int ret = 0; proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); if (!proc) { ret = -ENOMEM; goto out; } proc->cpuid = kvm->arch.model.cpuid; proc->ibc = kvm->arch.model.ibc; memcpy(&proc->fac_list, kvm->arch.model.fac_list, S390_ARCH_FAC_LIST_SIZE_BYTE); VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", kvm->arch.model.ibc, kvm->arch.model.cpuid); VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", kvm->arch.model.fac_list[0], kvm->arch.model.fac_list[1], kvm->arch.model.fac_list[2]); if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) ret = -EFAULT; kfree(proc); out: return ret; } static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_machine *mach; int ret = 0; mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); if (!mach) { ret = -ENOMEM; goto out; } get_cpu_id((struct cpuid *) &mach->cpuid); mach->ibc = sclp.ibc; memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, S390_ARCH_FAC_LIST_SIZE_BYTE); memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, sizeof(stfle_fac_list)); VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", kvm->arch.model.ibc, kvm->arch.model.cpuid); VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", mach->fac_mask[0], mach->fac_mask[1], mach->fac_mask[2]); VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", mach->fac_list[0], mach->fac_list[1], mach->fac_list[2]); if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) ret = -EFAULT; kfree(mach); out: return ret; } static int kvm_s390_get_processor_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_feat data; bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) return -EFAULT; VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", data.feat[0], data.feat[1], data.feat[2]); return 0; } static int kvm_s390_get_machine_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_feat data; bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) return -EFAULT; VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", data.feat[0], data.feat[1], data.feat[2]); return 0; } static int kvm_s390_get_processor_subfunc(struct kvm *kvm, struct kvm_device_attr *attr) { if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, sizeof(struct kvm_s390_vm_cpu_subfunc))) return -EFAULT; VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); return 0; } static int kvm_s390_get_machine_subfunc(struct kvm *kvm, struct kvm_device_attr *attr) { if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, sizeof(struct kvm_s390_vm_cpu_subfunc))) return -EFAULT; VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.km)[0], ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); return 0; } static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; unsigned long feat = kvm->arch.model.uv_feat_guest.feat; if (put_user(feat, &dst->feat)) return -EFAULT; VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); return 0; } static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) { struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; unsigned long feat; BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; if (put_user(feat, &dst->feat)) return -EFAULT; VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); return 0; } static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) { int ret = -ENXIO; switch (attr->attr) { case KVM_S390_VM_CPU_PROCESSOR: ret = kvm_s390_get_processor(kvm, attr); break; case KVM_S390_VM_CPU_MACHINE: ret = kvm_s390_get_machine(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_FEAT: ret = kvm_s390_get_processor_feat(kvm, attr); break; case KVM_S390_VM_CPU_MACHINE_FEAT: ret = kvm_s390_get_machine_feat(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: ret = kvm_s390_get_processor_subfunc(kvm, attr); break; case KVM_S390_VM_CPU_MACHINE_SUBFUNC: ret = kvm_s390_get_machine_subfunc(kvm, attr); break; case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: ret = kvm_s390_get_processor_uv_feat(kvm, attr); break; case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: ret = kvm_s390_get_machine_uv_feat(kvm, attr); break; } return ret; } /** * kvm_s390_update_topology_change_report - update CPU topology change report * @kvm: guest KVM description * @val: set or clear the MTCR bit * * Updates the Multiprocessor Topology-Change-Report bit to signal * the guest with a topology change. * This is only relevant if the topology facility is present. * * The SCA version, bsca or esca, doesn't matter as offset is the same. */ static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) { union sca_utility new, old; struct bsca_block *sca; read_lock(&kvm->arch.sca_lock); sca = kvm->arch.sca; do { old = READ_ONCE(sca->utility); new = old; new.mtcr = val; } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); read_unlock(&kvm->arch.sca_lock); } static int kvm_s390_set_topo_change_indication(struct kvm *kvm, struct kvm_device_attr *attr) { if (!test_kvm_facility(kvm, 11)) return -ENXIO; kvm_s390_update_topology_change_report(kvm, !!attr->attr); return 0; } static int kvm_s390_get_topo_change_indication(struct kvm *kvm, struct kvm_device_attr *attr) { u8 topo; if (!test_kvm_facility(kvm, 11)) return -ENXIO; read_lock(&kvm->arch.sca_lock); topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; read_unlock(&kvm->arch.sca_lock); return put_user(topo, (u8 __user *)attr->addr); } static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_S390_VM_MEM_CTRL: ret = kvm_s390_set_mem_control(kvm, attr); break; case KVM_S390_VM_TOD: ret = kvm_s390_set_tod(kvm, attr); break; case KVM_S390_VM_CPU_MODEL: ret = kvm_s390_set_cpu_model(kvm, attr); break; case KVM_S390_VM_CRYPTO: ret = kvm_s390_vm_set_crypto(kvm, attr); break; case KVM_S390_VM_MIGRATION: ret = kvm_s390_vm_set_migration(kvm, attr); break; case KVM_S390_VM_CPU_TOPOLOGY: ret = kvm_s390_set_topo_change_indication(kvm, attr); break; default: ret = -ENXIO; break; } return ret; } static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_S390_VM_MEM_CTRL: ret = kvm_s390_get_mem_control(kvm, attr); break; case KVM_S390_VM_TOD: ret = kvm_s390_get_tod(kvm, attr); break; case KVM_S390_VM_CPU_MODEL: ret = kvm_s390_get_cpu_model(kvm, attr); break; case KVM_S390_VM_MIGRATION: ret = kvm_s390_vm_get_migration(kvm, attr); break; case KVM_S390_VM_CPU_TOPOLOGY: ret = kvm_s390_get_topo_change_indication(kvm, attr); break; default: ret = -ENXIO; break; } return ret; } static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_S390_VM_MEM_CTRL: switch (attr->attr) { case KVM_S390_VM_MEM_ENABLE_CMMA: case KVM_S390_VM_MEM_CLR_CMMA: ret = sclp.has_cmma ? 0 : -ENXIO; break; case KVM_S390_VM_MEM_LIMIT_SIZE: ret = 0; break; default: ret = -ENXIO; break; } break; case KVM_S390_VM_TOD: switch (attr->attr) { case KVM_S390_VM_TOD_LOW: case KVM_S390_VM_TOD_HIGH: ret = 0; break; default: ret = -ENXIO; break; } break; case KVM_S390_VM_CPU_MODEL: switch (attr->attr) { case KVM_S390_VM_CPU_PROCESSOR: case KVM_S390_VM_CPU_MACHINE: case KVM_S390_VM_CPU_PROCESSOR_FEAT: case KVM_S390_VM_CPU_MACHINE_FEAT: case KVM_S390_VM_CPU_MACHINE_SUBFUNC: case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: ret = 0; break; default: ret = -ENXIO; break; } break; case KVM_S390_VM_CRYPTO: switch (attr->attr) { case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: ret = 0; break; case KVM_S390_VM_CRYPTO_ENABLE_APIE: case KVM_S390_VM_CRYPTO_DISABLE_APIE: ret = ap_instructions_available() ? 0 : -ENXIO; break; default: ret = -ENXIO; break; } break; case KVM_S390_VM_MIGRATION: ret = 0; break; case KVM_S390_VM_CPU_TOPOLOGY: ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; break; default: ret = -ENXIO; break; } return ret; } static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) { uint8_t *keys; uint64_t hva; int srcu_idx, i, r = 0; if (args->flags != 0) return -EINVAL; /* Is this guest using storage keys? */ if (!mm_uses_skeys(current->mm)) return KVM_S390_GET_SKEYS_NONE; /* Enforce sane limit on memory allocation */ if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) return -EINVAL; keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); if (!keys) return -ENOMEM; mmap_read_lock(current->mm); srcu_idx = srcu_read_lock(&kvm->srcu); for (i = 0; i < args->count; i++) { hva = gfn_to_hva(kvm, args->start_gfn + i); if (kvm_is_error_hva(hva)) { r = -EFAULT; break; } r = get_guest_storage_key(current->mm, hva, &keys[i]); if (r) break; } srcu_read_unlock(&kvm->srcu, srcu_idx); mmap_read_unlock(current->mm); if (!r) { r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, sizeof(uint8_t) * args->count); if (r) r = -EFAULT; } kvfree(keys); return r; } static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) { uint8_t *keys; uint64_t hva; int srcu_idx, i, r = 0; bool unlocked; if (args->flags != 0) return -EINVAL; /* Enforce sane limit on memory allocation */ if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) return -EINVAL; keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); if (!keys) return -ENOMEM; r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, sizeof(uint8_t) * args->count); if (r) { r = -EFAULT; goto out; } /* Enable storage key handling for the guest */ r = s390_enable_skey(); if (r) goto out; i = 0; mmap_read_lock(current->mm); srcu_idx = srcu_read_lock(&kvm->srcu); while (i < args->count) { unlocked = false; hva = gfn_to_hva(kvm, args->start_gfn + i); if (kvm_is_error_hva(hva)) { r = -EFAULT; break; } /* Lowest order bit is reserved */ if (keys[i] & 0x01) { r = -EINVAL; break; } r = set_guest_storage_key(current->mm, hva, keys[i], 0); if (r) { r = fixup_user_fault(current->mm, hva, FAULT_FLAG_WRITE, &unlocked); if (r) break; } if (!r) i++; } srcu_read_unlock(&kvm->srcu, srcu_idx); mmap_read_unlock(current->mm); out: kvfree(keys); return r; } /* * Base address and length must be sent at the start of each block, therefore * it's cheaper to send some clean data, as long as it's less than the size of * two longs. */ #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) /* for consistency */ #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, u8 *res, unsigned long bufsize) { unsigned long pgstev, hva, cur_gfn = args->start_gfn; args->count = 0; while (args->count < bufsize) { hva = gfn_to_hva(kvm, cur_gfn); /* * We return an error if the first value was invalid, but we * return successfully if at least one value was copied. */ if (kvm_is_error_hva(hva)) return args->count ? 0 : -EFAULT; if (get_pgste(kvm->mm, hva, &pgstev) < 0) pgstev = 0; res[args->count++] = (pgstev >> 24) & 0x43; cur_gfn++; } return 0; } static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn) { return ____gfn_to_memslot(slots, gfn, true); } static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, unsigned long cur_gfn) { struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); unsigned long ofs = cur_gfn - ms->base_gfn; struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; if (ms->base_gfn + ms->npages <= cur_gfn) { mnode = rb_next(mnode); /* If we are above the highest slot, wrap around */ if (!mnode) mnode = rb_first(&slots->gfn_tree); ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); ofs = 0; } if (cur_gfn < ms->base_gfn) ofs = 0; ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); while (ofs >= ms->npages && (mnode = rb_next(mnode))) { ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); } return ms->base_gfn + ofs; } static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, u8 *res, unsigned long bufsize) { unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *ms; if (unlikely(kvm_memslots_empty(slots))) return 0; cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); ms = gfn_to_memslot(kvm, cur_gfn); args->count = 0; args->start_gfn = cur_gfn; if (!ms) return 0; next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); mem_end = kvm_s390_get_gfn_end(slots); while (args->count < bufsize) { hva = gfn_to_hva(kvm, cur_gfn); if (kvm_is_error_hva(hva)) return 0; /* Decrement only if we actually flipped the bit to 0 */ if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) atomic64_dec(&kvm->arch.cmma_dirty_pages); if (get_pgste(kvm->mm, hva, &pgstev) < 0) pgstev = 0; /* Save the value */ res[args->count++] = (pgstev >> 24) & 0x43; /* If the next bit is too far away, stop. */ if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) return 0; /* If we reached the previous "next", find the next one */ if (cur_gfn == next_gfn) next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); /* Reached the end of memory or of the buffer, stop */ if ((next_gfn >= mem_end) || (next_gfn - args->start_gfn >= bufsize)) return 0; cur_gfn++; /* Reached the end of the current memslot, take the next one. */ if (cur_gfn - ms->base_gfn >= ms->npages) { ms = gfn_to_memslot(kvm, cur_gfn); if (!ms) return 0; } } return 0; } /* * This function searches for the next page with dirty CMMA attributes, and * saves the attributes in the buffer up to either the end of the buffer or * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; * no trailing clean bytes are saved. * In case no dirty bits were found, or if CMMA was not enabled or used, the * output buffer will indicate 0 as length. */ static int kvm_s390_get_cmma_bits(struct kvm *kvm, struct kvm_s390_cmma_log *args) { unsigned long bufsize; int srcu_idx, peek, ret; u8 *values; if (!kvm->arch.use_cmma) return -ENXIO; /* Invalid/unsupported flags were specified */ if (args->flags & ~KVM_S390_CMMA_PEEK) return -EINVAL; /* Migration mode query, and we are not doing a migration */ peek = !!(args->flags & KVM_S390_CMMA_PEEK); if (!peek && !kvm->arch.migration_mode) return -EINVAL; /* CMMA is disabled or was not used, or the buffer has length zero */ bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); if (!bufsize || !kvm->mm->context.uses_cmm) { memset(args, 0, sizeof(*args)); return 0; } /* We are not peeking, and there are no dirty pages */ if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { memset(args, 0, sizeof(*args)); return 0; } values = vmalloc(bufsize); if (!values) return -ENOMEM; mmap_read_lock(kvm->mm); srcu_idx = srcu_read_lock(&kvm->srcu); if (peek) ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); else ret = kvm_s390_get_cmma(kvm, args, values, bufsize); srcu_read_unlock(&kvm->srcu, srcu_idx); mmap_read_unlock(kvm->mm); if (kvm->arch.migration_mode) args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); else args->remaining = 0; if (copy_to_user((void __user *)args->values, values, args->count)) ret = -EFAULT; vfree(values); return ret; } /* * This function sets the CMMA attributes for the given pages. If the input * buffer has zero length, no action is taken, otherwise the attributes are * set and the mm->context.uses_cmm flag is set. */ static int kvm_s390_set_cmma_bits(struct kvm *kvm, const struct kvm_s390_cmma_log *args) { unsigned long hva, mask, pgstev, i; uint8_t *bits; int srcu_idx, r = 0; mask = args->mask; if (!kvm->arch.use_cmma) return -ENXIO; /* invalid/unsupported flags */ if (args->flags != 0) return -EINVAL; /* Enforce sane limit on memory allocation */ if (args->count > KVM_S390_CMMA_SIZE_MAX) return -EINVAL; /* Nothing to do */ if (args->count == 0) return 0; bits = vmalloc(array_size(sizeof(*bits), args->count)); if (!bits) return -ENOMEM; r = copy_from_user(bits, (void __user *)args->values, args->count); if (r) { r = -EFAULT; goto out; } mmap_read_lock(kvm->mm); srcu_idx = srcu_read_lock(&kvm->srcu); for (i = 0; i < args->count; i++) { hva = gfn_to_hva(kvm, args->start_gfn + i); if (kvm_is_error_hva(hva)) { r = -EFAULT; break; } pgstev = bits[i]; pgstev = pgstev << 24; mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; set_pgste_bits(kvm->mm, hva, mask, pgstev); } srcu_read_unlock(&kvm->srcu, srcu_idx); mmap_read_unlock(kvm->mm); if (!kvm->mm->context.uses_cmm) { mmap_write_lock(kvm->mm); kvm->mm->context.uses_cmm = 1; mmap_write_unlock(kvm->mm); } out: vfree(bits); return r; } /** * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to * non protected. * @kvm: the VM whose protected vCPUs are to be converted * @rc: return value for the RC field of the UVC (in case of error) * @rrc: return value for the RRC field of the UVC (in case of error) * * Does not stop in case of error, tries to convert as many * CPUs as possible. In case of error, the RC and RRC of the last error are * returned. * * Return: 0 in case of success, otherwise -EIO */ int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) { struct kvm_vcpu *vcpu; unsigned long i; u16 _rc, _rrc; int ret = 0; /* * We ignore failures and try to destroy as many CPUs as possible. * At the same time we must not free the assigned resources when * this fails, as the ultravisor has still access to that memory. * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak * behind. * We want to return the first failure rc and rrc, though. */ kvm_for_each_vcpu(i, vcpu, kvm) { mutex_lock(&vcpu->mutex); if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { *rc = _rc; *rrc = _rrc; ret = -EIO; } mutex_unlock(&vcpu->mutex); } /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ if (use_gisa) kvm_s390_gisa_enable(kvm); return ret; } /** * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM * to protected. * @kvm: the VM whose protected vCPUs are to be converted * @rc: return value for the RC field of the UVC (in case of error) * @rrc: return value for the RRC field of the UVC (in case of error) * * Tries to undo the conversion in case of error. * * Return: 0 in case of success, otherwise -EIO */ static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) { unsigned long i; int r = 0; u16 dummy; struct kvm_vcpu *vcpu; /* Disable the GISA if the ultravisor does not support AIV. */ if (!uv_has_feature(BIT_UV_FEAT_AIV)) kvm_s390_gisa_disable(kvm); kvm_for_each_vcpu(i, vcpu, kvm) { mutex_lock(&vcpu->mutex); r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); mutex_unlock(&vcpu->mutex); if (r) break; } if (r) kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); return r; } /* * Here we provide user space with a direct interface to query UV * related data like UV maxima and available features as well as * feature specific data. * * To facilitate future extension of the data structures we'll try to * write data up to the maximum requested length. */ static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) { ssize_t len_min; switch (info->header.id) { case KVM_PV_INFO_VM: { len_min = sizeof(info->header) + sizeof(info->vm); if (info->header.len_max < len_min) return -EINVAL; memcpy(info->vm.inst_calls_list, uv_info.inst_calls_list, sizeof(uv_info.inst_calls_list)); /* It's max cpuid not max cpus, so it's off by one */ info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; info->vm.max_guests = uv_info.max_num_sec_conf; info->vm.max_guest_addr = uv_info.max_sec_stor_addr; info->vm.feature_indication = uv_info.uv_feature_indications; return len_min; } case KVM_PV_INFO_DUMP: { len_min = sizeof(info->header) + sizeof(info->dump); if (info->header.len_max < len_min) return -EINVAL; info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; return len_min; } default: return -EINVAL; } } static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, struct kvm_s390_pv_dmp dmp) { int r = -EINVAL; void __user *result_buff = (void __user *)dmp.buff_addr; switch (dmp.subcmd) { case KVM_PV_DUMP_INIT: { if (kvm->arch.pv.dumping) break; /* * Block SIE entry as concurrent dump UVCs could lead * to validities. */ kvm_s390_vcpu_block_all(kvm); r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", cmd->rc, cmd->rrc); if (!r) { kvm->arch.pv.dumping = true; } else { kvm_s390_vcpu_unblock_all(kvm); r = -EINVAL; } break; } case KVM_PV_DUMP_CONFIG_STOR_STATE: { if (!kvm->arch.pv.dumping) break; /* * gaddr is an output parameter since we might stop * early. As dmp will be copied back in our caller, we * don't need to do it ourselves. */ r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, &cmd->rc, &cmd->rrc); break; } case KVM_PV_DUMP_COMPLETE: { if (!kvm->arch.pv.dumping) break; r = -EINVAL; if (dmp.buff_len < uv_info.conf_dump_finalize_len) break; r = kvm_s390_pv_dump_complete(kvm, result_buff, &cmd->rc, &cmd->rrc); break; } default: r = -ENOTTY; break; } return r; } static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) { const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); void __user *argp = (void __user *)cmd->data; int r = 0; u16 dummy; if (need_lock) mutex_lock(&kvm->lock); switch (cmd->cmd) { case KVM_PV_ENABLE: { r = -EINVAL; if (kvm_s390_pv_is_protected(kvm)) break; /* * FMT 4 SIE needs esca. As we never switch back to bsca from * esca, we need no cleanup in the error cases below */ r = sca_switch_to_extended(kvm); if (r) break; r = s390_disable_cow_sharing(); if (r) break; r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); if (r) break; r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); if (r) kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); /* we need to block service interrupts from now on */ set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); break; } case KVM_PV_ASYNC_CLEANUP_PREPARE: r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) break; r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); /* * If a CPU could not be destroyed, destroy VM will also fail. * There is no point in trying to destroy it. Instead return * the rc and rrc from the first CPU that failed destroying. */ if (r) break; r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); /* no need to block service interrupts any more */ clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); break; case KVM_PV_ASYNC_CLEANUP_PERFORM: r = -EINVAL; if (!async_destroy) break; /* kvm->lock must not be held; this is asserted inside the function. */ r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); break; case KVM_PV_DISABLE: { r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); /* * If a CPU could not be destroyed, destroy VM will also fail. * There is no point in trying to destroy it. Instead return * the rc and rrc from the first CPU that failed destroying. */ if (r) break; r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); /* no need to block service interrupts any more */ clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); break; } case KVM_PV_SET_SEC_PARMS: { struct kvm_s390_pv_sec_parm parms = {}; void *hdr; r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = -EFAULT; if (copy_from_user(&parms, argp, sizeof(parms))) break; /* Currently restricted to 8KB */ r = -EINVAL; if (parms.length > PAGE_SIZE * 2) break; r = -ENOMEM; hdr = vmalloc(parms.length); if (!hdr) break; r = -EFAULT; if (!copy_from_user(hdr, (void __user *)parms.origin, parms.length)) r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, &cmd->rc, &cmd->rrc); vfree(hdr); break; } case KVM_PV_UNPACK: { struct kvm_s390_pv_unp unp = {}; r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) break; r = -EFAULT; if (copy_from_user(&unp, argp, sizeof(unp))) break; r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, &cmd->rc, &cmd->rrc); break; } case KVM_PV_VERIFY: { r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, cmd->rrc); break; } case KVM_PV_PREP_RESET: { r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", cmd->rc, cmd->rrc); break; } case KVM_PV_UNSHARE_ALL: { r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", cmd->rc, cmd->rrc); break; } case KVM_PV_INFO: { struct kvm_s390_pv_info info = {}; ssize_t data_len; /* * No need to check the VM protection here. * * Maybe user space wants to query some of the data * when the VM is still unprotected. If we see the * need to fence a new data command we can still * return an error in the info handler. */ r = -EFAULT; if (copy_from_user(&info, argp, sizeof(info.header))) break; r = -EINVAL; if (info.header.len_max < sizeof(info.header)) break; data_len = kvm_s390_handle_pv_info(&info); if (data_len < 0) { r = data_len; break; } /* * If a data command struct is extended (multiple * times) this can be used to determine how much of it * is valid. */ info.header.len_written = data_len; r = -EFAULT; if (copy_to_user(argp, &info, data_len)) break; r = 0; break; } case KVM_PV_DUMP: { struct kvm_s390_pv_dmp dmp; r = -EINVAL; if (!kvm_s390_pv_is_protected(kvm)) break; r = -EFAULT; if (copy_from_user(&dmp, argp, sizeof(dmp))) break; r = kvm_s390_pv_dmp(kvm, cmd, dmp); if (r) break; if (copy_to_user(argp, &dmp, sizeof(dmp))) { r = -EFAULT; break; } break; } default: r = -ENOTTY; } if (need_lock) mutex_unlock(&kvm->lock); return r; } static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) { if (mop->flags & ~supported_flags || !mop->size) return -EINVAL; if (mop->size > MEM_OP_MAX_SIZE) return -E2BIG; if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { if (mop->key > 0xf) return -EINVAL; } else { mop->key = 0; } return 0; } static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) { void __user *uaddr = (void __user *)mop->buf; enum gacc_mode acc_mode; void *tmpbuf = NULL; int r, srcu_idx; r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | KVM_S390_MEMOP_F_CHECK_ONLY); if (r) return r; if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { tmpbuf = vmalloc(mop->size); if (!tmpbuf) return -ENOMEM; } srcu_idx = srcu_read_lock(&kvm->srcu); if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { r = PGM_ADDRESSING; goto out_unlock; } acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); goto out_unlock; } if (acc_mode == GACC_FETCH) { r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, mop->size, GACC_FETCH, mop->key); if (r) goto out_unlock; if (copy_to_user(uaddr, tmpbuf, mop->size)) r = -EFAULT; } else { if (copy_from_user(tmpbuf, uaddr, mop->size)) { r = -EFAULT; goto out_unlock; } r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, mop->size, GACC_STORE, mop->key); } out_unlock: srcu_read_unlock(&kvm->srcu, srcu_idx); vfree(tmpbuf); return r; } static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) { void __user *uaddr = (void __user *)mop->buf; void __user *old_addr = (void __user *)mop->old_addr; union { __uint128_t quad; char raw[sizeof(__uint128_t)]; } old = { .quad = 0}, new = { .quad = 0 }; unsigned int off_in_quad = sizeof(new) - mop->size; int r, srcu_idx; bool success; r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); if (r) return r; /* * This validates off_in_quad. Checking that size is a power * of two is not necessary, as cmpxchg_guest_abs_with_key * takes care of that */ if (mop->size > sizeof(new)) return -EINVAL; if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) return -EFAULT; if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) return -EFAULT; srcu_idx = srcu_read_lock(&kvm->srcu); if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { r = PGM_ADDRESSING; goto out_unlock; } r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, new.quad, mop->key, &success); if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) r = -EFAULT; out_unlock: srcu_read_unlock(&kvm->srcu, srcu_idx); return r; } static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) { /* * This is technically a heuristic only, if the kvm->lock is not * taken, it is not guaranteed that the vm is/remains non-protected. * This is ok from a kernel perspective, wrongdoing is detected * on the access, -EFAULT is returned and the vm may crash the * next time it accesses the memory in question. * There is no sane usecase to do switching and a memop on two * different CPUs at the same time. */ if (kvm_s390_pv_get_handle(kvm)) return -EINVAL; switch (mop->op) { case KVM_S390_MEMOP_ABSOLUTE_READ: case KVM_S390_MEMOP_ABSOLUTE_WRITE: return kvm_s390_vm_mem_op_abs(kvm, mop); case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); default: return -EINVAL; } } int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; struct kvm_device_attr attr; int r; switch (ioctl) { case KVM_S390_INTERRUPT: { struct kvm_s390_interrupt s390int; r = -EFAULT; if (copy_from_user(&s390int, argp, sizeof(s390int))) break; r = kvm_s390_inject_vm(kvm, &s390int); break; } case KVM_CREATE_IRQCHIP: { struct kvm_irq_routing_entry routing; r = -EINVAL; if (kvm->arch.use_irqchip) { /* Set up dummy routing. */ memset(&routing, 0, sizeof(routing)); r = kvm_set_irq_routing(kvm, &routing, 0, 0); } break; } case KVM_SET_DEVICE_ATTR: { r = -EFAULT; if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) break; r = kvm_s390_vm_set_attr(kvm, &attr); break; } case KVM_GET_DEVICE_ATTR: { r = -EFAULT; if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) break; r = kvm_s390_vm_get_attr(kvm, &attr); break; } case KVM_HAS_DEVICE_ATTR: { r = -EFAULT; if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) break; r = kvm_s390_vm_has_attr(kvm, &attr); break; } case KVM_S390_GET_SKEYS: { struct kvm_s390_skeys args; r = -EFAULT; if (copy_from_user(&args, argp, sizeof(struct kvm_s390_skeys))) break; r = kvm_s390_get_skeys(kvm, &args); break; } case KVM_S390_SET_SKEYS: { struct kvm_s390_skeys args; r = -EFAULT; if (copy_from_user(&args, argp, sizeof(struct kvm_s390_skeys))) break; r = kvm_s390_set_skeys(kvm, &args); break; } case KVM_S390_GET_CMMA_BITS: { struct kvm_s390_cmma_log args; r = -EFAULT; if (copy_from_user(&args, argp, sizeof(args))) break; mutex_lock(&kvm->slots_lock); r = kvm_s390_get_cmma_bits(kvm, &args); mutex_unlock(&kvm->slots_lock); if (!r) { r = copy_to_user(argp, &args, sizeof(args)); if (r) r = -EFAULT; } break; } case KVM_S390_SET_CMMA_BITS: { struct kvm_s390_cmma_log args; r = -EFAULT; if (copy_from_user(&args, argp, sizeof(args))) break; mutex_lock(&kvm->slots_lock); r = kvm_s390_set_cmma_bits(kvm, &args); mutex_unlock(&kvm->slots_lock); break; } case KVM_S390_PV_COMMAND: { struct kvm_pv_cmd args; /* protvirt means user cpu state */ kvm_s390_set_user_cpu_state_ctrl(kvm); r = 0; if (!is_prot_virt_host()) { r = -EINVAL; break; } if (copy_from_user(&args, argp, sizeof(args))) { r = -EFAULT; break; } if (args.flags) { r = -EINVAL; break; } /* must be called without kvm->lock */ r = kvm_s390_handle_pv(kvm, &args); if (copy_to_user(argp, &args, sizeof(args))) { r = -EFAULT; break; } break; } case KVM_S390_MEM_OP: { struct kvm_s390_mem_op mem_op; if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) r = kvm_s390_vm_mem_op(kvm, &mem_op); else r = -EFAULT; break; } case KVM_S390_ZPCI_OP: { struct kvm_s390_zpci_op args; r = -EINVAL; if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) break; if (copy_from_user(&args, argp, sizeof(args))) { r = -EFAULT; break; } r = kvm_s390_pci_zpci_op(kvm, &args); break; } default: r = -ENOTTY; } return r; } static int kvm_s390_apxa_installed(void) { struct ap_config_info info; if (ap_instructions_available()) { if (ap_qci(&info) == 0) return info.apxa; } return 0; } /* * The format of the crypto control block (CRYCB) is specified in the 3 low * order bits of the CRYCB designation (CRYCBD) field as follows: * Format 0: Neither the message security assist extension 3 (MSAX3) nor the * AP extended addressing (APXA) facility are installed. * Format 1: The APXA facility is not installed but the MSAX3 facility is. * Format 2: Both the APXA and MSAX3 facilities are installed */ static void kvm_s390_set_crycb_format(struct kvm *kvm) { kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); /* Clear the CRYCB format bits - i.e., set format 0 by default */ kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); /* Check whether MSAX3 is installed */ if (!test_kvm_facility(kvm, 76)) return; if (kvm_s390_apxa_installed()) kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; else kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; } /* * kvm_arch_crypto_set_masks * * @kvm: pointer to the target guest's KVM struct containing the crypto masks * to be set. * @apm: the mask identifying the accessible AP adapters * @aqm: the mask identifying the accessible AP domains * @adm: the mask identifying the accessible AP control domains * * Set the masks that identify the adapters, domains and control domains to * which the KVM guest is granted access. * * Note: The kvm->lock mutex must be locked by the caller before invoking this * function. */ void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, unsigned long *aqm, unsigned long *adm) { struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; kvm_s390_vcpu_block_all(kvm); switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { case CRYCB_FORMAT2: /* APCB1 use 256 bits */ memcpy(crycb->apcb1.apm, apm, 32); VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", apm[0], apm[1], apm[2], apm[3]); memcpy(crycb->apcb1.aqm, aqm, 32); VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", aqm[0], aqm[1], aqm[2], aqm[3]); memcpy(crycb->apcb1.adm, adm, 32); VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", adm[0], adm[1], adm[2], adm[3]); break; case CRYCB_FORMAT1: case CRYCB_FORMAT0: /* Fall through both use APCB0 */ memcpy(crycb->apcb0.apm, apm, 8); memcpy(crycb->apcb0.aqm, aqm, 2); memcpy(crycb->apcb0.adm, adm, 2); VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", apm[0], *((unsigned short *)aqm), *((unsigned short *)adm)); break; default: /* Can not happen */ break; } /* recreate the shadow crycb for each vcpu */ kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); kvm_s390_vcpu_unblock_all(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); /* * kvm_arch_crypto_clear_masks * * @kvm: pointer to the target guest's KVM struct containing the crypto masks * to be cleared. * * Clear the masks that identify the adapters, domains and control domains to * which the KVM guest is granted access. * * Note: The kvm->lock mutex must be locked by the caller before invoking this * function. */ void kvm_arch_crypto_clear_masks(struct kvm *kvm) { kvm_s390_vcpu_block_all(kvm); memset(&kvm->arch.crypto.crycb->apcb0, 0, sizeof(kvm->arch.crypto.crycb->apcb0)); memset(&kvm->arch.crypto.crycb->apcb1, 0, sizeof(kvm->arch.crypto.crycb->apcb1)); VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); /* recreate the shadow crycb for each vcpu */ kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); kvm_s390_vcpu_unblock_all(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); static u64 kvm_s390_get_initial_cpuid(void) { struct cpuid cpuid; get_cpu_id(&cpuid); cpuid.version = 0xff; return *((u64 *) &cpuid); } static void kvm_s390_crypto_init(struct kvm *kvm) { kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; kvm_s390_set_crycb_format(kvm); init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); if (!test_kvm_facility(kvm, 76)) return; /* Enable AES/DEA protected key functions by default */ kvm->arch.crypto.aes_kw = 1; kvm->arch.crypto.dea_kw = 1; get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); } static void sca_dispose(struct kvm *kvm) { if (kvm->arch.use_esca) free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); else free_page((unsigned long)(kvm->arch.sca)); kvm->arch.sca = NULL; } void kvm_arch_free_vm(struct kvm *kvm) { if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) kvm_s390_pci_clear_list(kvm); __kvm_arch_free_vm(kvm); } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; int i, rc; char debug_name[16]; static unsigned long sca_offset; rc = -EINVAL; #ifdef CONFIG_KVM_S390_UCONTROL if (type & ~KVM_VM_S390_UCONTROL) goto out_err; if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) goto out_err; #else if (type) goto out_err; #endif rc = s390_enable_sie(); if (rc) goto out_err; rc = -ENOMEM; if (!sclp.has_64bscao) alloc_flags |= GFP_DMA; rwlock_init(&kvm->arch.sca_lock); /* start with basic SCA */ kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); if (!kvm->arch.sca) goto out_err; mutex_lock(&kvm_lock); sca_offset += 16; if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) sca_offset = 0; kvm->arch.sca = (struct bsca_block *) ((char *) kvm->arch.sca + sca_offset); mutex_unlock(&kvm_lock); sprintf(debug_name, "kvm-%u", current->pid); kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); if (!kvm->arch.dbf) goto out_err; BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); kvm->arch.sie_page2 = (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); if (!kvm->arch.sie_page2) goto out_err; kvm->arch.sie_page2->kvm = kvm; kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; for (i = 0; i < kvm_s390_fac_size(); i++) { kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & (kvm_s390_fac_base[i] | kvm_s390_fac_ext[i]); kvm->arch.model.fac_list[i] = stfle_fac_list[i] & kvm_s390_fac_base[i]; } kvm->arch.model.subfuncs = kvm_s390_available_subfunc; /* we are always in czam mode - even on pre z14 machines */ set_kvm_facility(kvm->arch.model.fac_mask, 138); set_kvm_facility(kvm->arch.model.fac_list, 138); /* we emulate STHYI in kvm */ set_kvm_facility(kvm->arch.model.fac_mask, 74); set_kvm_facility(kvm->arch.model.fac_list, 74); if (MACHINE_HAS_TLB_GUEST) { set_kvm_facility(kvm->arch.model.fac_mask, 147); set_kvm_facility(kvm->arch.model.fac_list, 147); } if (css_general_characteristics.aiv && test_facility(65)) set_kvm_facility(kvm->arch.model.fac_mask, 65); kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); kvm->arch.model.ibc = sclp.ibc & 0x0fff; kvm->arch.model.uv_feat_guest.feat = 0; kvm_s390_crypto_init(kvm); if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { mutex_lock(&kvm->lock); kvm_s390_pci_init_list(kvm); kvm_s390_vcpu_pci_enable_interp(kvm); mutex_unlock(&kvm->lock); } mutex_init(&kvm->arch.float_int.ais_lock); spin_lock_init(&kvm->arch.float_int.lock); for (i = 0; i < FIRQ_LIST_COUNT; i++) INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); init_waitqueue_head(&kvm->arch.ipte_wq); mutex_init(&kvm->arch.ipte_mutex); debug_register_view(kvm->arch.dbf, &debug_sprintf_view); VM_EVENT(kvm, 3, "vm created with type %lu", type); if (type & KVM_VM_S390_UCONTROL) { kvm->arch.gmap = NULL; kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; } else { if (sclp.hamax == U64_MAX) kvm->arch.mem_limit = TASK_SIZE_MAX; else kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, sclp.hamax + 1); kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); if (!kvm->arch.gmap) goto out_err; kvm->arch.gmap->private = kvm; kvm->arch.gmap->pfault_enabled = 0; } kvm->arch.use_pfmfi = sclp.has_pfmfi; kvm->arch.use_skf = sclp.has_skey; spin_lock_init(&kvm->arch.start_stop_lock); kvm_s390_vsie_init(kvm); if (use_gisa) kvm_s390_gisa_init(kvm); INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); kvm->arch.pv.set_aside = NULL; KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); return 0; out_err: free_page((unsigned long)kvm->arch.sie_page2); debug_unregister(kvm->arch.dbf); sca_dispose(kvm); KVM_EVENT(3, "creation of vm failed: %d", rc); return rc; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { u16 rc, rrc; VCPU_EVENT(vcpu, 3, "%s", "free cpu"); trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); kvm_s390_clear_local_irqs(vcpu); kvm_clear_async_pf_completion_queue(vcpu); if (!kvm_is_ucontrol(vcpu->kvm)) sca_del_vcpu(vcpu); kvm_s390_update_topology_change_report(vcpu->kvm, 1); if (kvm_is_ucontrol(vcpu->kvm)) gmap_remove(vcpu->arch.gmap); if (vcpu->kvm->arch.use_cmma) kvm_s390_vcpu_unsetup_cmma(vcpu); /* We can not hold the vcpu mutex here, we are already dying */ if (kvm_s390_pv_cpu_get_handle(vcpu)) kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); free_page((unsigned long)(vcpu->arch.sie_block)); } void kvm_arch_destroy_vm(struct kvm *kvm) { u16 rc, rrc; kvm_destroy_vcpus(kvm); sca_dispose(kvm); kvm_s390_gisa_destroy(kvm); /* * We are already at the end of life and kvm->lock is not taken. * This is ok as the file descriptor is closed by now and nobody * can mess with the pv state. */ kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); /* * Remove the mmu notifier only when the whole KVM VM is torn down, * and only if one was registered to begin with. If the VM is * currently not protected, but has been previously been protected, * then it's possible that the notifier is still registered. */ if (kvm->arch.pv.mmu_notifier.ops) mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); debug_unregister(kvm->arch.dbf); free_page((unsigned long)kvm->arch.sie_page2); if (!kvm_is_ucontrol(kvm)) gmap_remove(kvm->arch.gmap); kvm_s390_destroy_adapters(kvm); kvm_s390_clear_float_irqs(kvm); kvm_s390_vsie_destroy(kvm); KVM_EVENT(3, "vm 0x%pK destroyed", kvm); } /* Section: vcpu related */ static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) { vcpu->arch.gmap = gmap_create(current->mm, -1UL); if (!vcpu->arch.gmap) return -ENOMEM; vcpu->arch.gmap->private = vcpu->kvm; return 0; } static void sca_del_vcpu(struct kvm_vcpu *vcpu) { if (!kvm_s390_use_sca_entries()) return; read_lock(&vcpu->kvm->arch.sca_lock); if (vcpu->kvm->arch.use_esca) { struct esca_block *sca = vcpu->kvm->arch.sca; clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); sca->cpu[vcpu->vcpu_id].sda = 0; } else { struct bsca_block *sca = vcpu->kvm->arch.sca; clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); sca->cpu[vcpu->vcpu_id].sda = 0; } read_unlock(&vcpu->kvm->arch.sca_lock); } static void sca_add_vcpu(struct kvm_vcpu *vcpu) { if (!kvm_s390_use_sca_entries()) { phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); /* we still need the basic sca for the ipte control */ vcpu->arch.sie_block->scaoh = sca_phys >> 32; vcpu->arch.sie_block->scaol = sca_phys; return; } read_lock(&vcpu->kvm->arch.sca_lock); if (vcpu->kvm->arch.use_esca) { struct esca_block *sca = vcpu->kvm->arch.sca; phys_addr_t sca_phys = virt_to_phys(sca); sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); vcpu->arch.sie_block->scaoh = sca_phys >> 32; vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); } else { struct bsca_block *sca = vcpu->kvm->arch.sca; phys_addr_t sca_phys = virt_to_phys(sca); sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); vcpu->arch.sie_block->scaoh = sca_phys >> 32; vcpu->arch.sie_block->scaol = sca_phys; set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); } read_unlock(&vcpu->kvm->arch.sca_lock); } /* Basic SCA to Extended SCA data copy routines */ static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) { d->sda = s->sda; d->sigp_ctrl.c = s->sigp_ctrl.c; d->sigp_ctrl.scn = s->sigp_ctrl.scn; } static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) { int i; d->ipte_control = s->ipte_control; d->mcn[0] = s->mcn; for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) sca_copy_entry(&d->cpu[i], &s->cpu[i]); } static int sca_switch_to_extended(struct kvm *kvm) { struct bsca_block *old_sca = kvm->arch.sca; struct esca_block *new_sca; struct kvm_vcpu *vcpu; unsigned long vcpu_idx; u32 scaol, scaoh; phys_addr_t new_sca_phys; if (kvm->arch.use_esca) return 0; new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!new_sca) return -ENOMEM; new_sca_phys = virt_to_phys(new_sca); scaoh = new_sca_phys >> 32; scaol = new_sca_phys & ESCA_SCAOL_MASK; kvm_s390_vcpu_block_all(kvm); write_lock(&kvm->arch.sca_lock); sca_copy_b_to_e(new_sca, old_sca); kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { vcpu->arch.sie_block->scaoh = scaoh; vcpu->arch.sie_block->scaol = scaol; vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; } kvm->arch.sca = new_sca; kvm->arch.use_esca = 1; write_unlock(&kvm->arch.sca_lock); kvm_s390_vcpu_unblock_all(kvm); free_page((unsigned long)old_sca); VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", old_sca, kvm->arch.sca); return 0; } static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) { int rc; if (!kvm_s390_use_sca_entries()) { if (id < KVM_MAX_VCPUS) return true; return false; } if (id < KVM_S390_BSCA_CPU_SLOTS) return true; if (!sclp.has_esca || !sclp.has_64bscao) return false; rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; } /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(vcpu->arch.cputm_start != 0); raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); vcpu->arch.cputm_start = get_tod_clock_fast(); raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); } /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(vcpu->arch.cputm_start == 0); raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; vcpu->arch.cputm_start = 0; raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); } /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(vcpu->arch.cputm_enabled); vcpu->arch.cputm_enabled = true; __start_cpu_timer_accounting(vcpu); } /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) { WARN_ON_ONCE(!vcpu->arch.cputm_enabled); __stop_cpu_timer_accounting(vcpu); vcpu->arch.cputm_enabled = false; } static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) { preempt_disable(); /* protect from TOD sync and vcpu_load/put */ __enable_cpu_timer_accounting(vcpu); preempt_enable(); } static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) { preempt_disable(); /* protect from TOD sync and vcpu_load/put */ __disable_cpu_timer_accounting(vcpu); preempt_enable(); } /* set the cpu timer - may only be called from the VCPU thread itself */ void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) { preempt_disable(); /* protect from TOD sync and vcpu_load/put */ raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); if (vcpu->arch.cputm_enabled) vcpu->arch.cputm_start = get_tod_clock_fast(); vcpu->arch.sie_block->cputm = cputm; raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); preempt_enable(); } /* update and get the cpu timer - can also be called from other VCPU threads */ __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) { unsigned int seq; __u64 value; if (unlikely(!vcpu->arch.cputm_enabled)) return vcpu->arch.sie_block->cputm; preempt_disable(); /* protect from TOD sync and vcpu_load/put */ do { seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); /* * If the writer would ever execute a read in the critical * section, e.g. in irq context, we have a deadlock. */ WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); value = vcpu->arch.sie_block->cputm; /* if cputm_start is 0, accounting is being started/stopped */ if (likely(vcpu->arch.cputm_start)) value -= get_tod_clock_fast() - vcpu->arch.cputm_start; } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); preempt_enable(); return value; } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { gmap_enable(vcpu->arch.enabled_gmap); kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) __start_cpu_timer_accounting(vcpu); vcpu->cpu = cpu; } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { vcpu->cpu = -1; if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) __stop_cpu_timer_accounting(vcpu); kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); vcpu->arch.enabled_gmap = gmap_get_enabled(); gmap_disable(vcpu->arch.enabled_gmap); } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { mutex_lock(&vcpu->kvm->lock); preempt_disable(); vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; preempt_enable(); mutex_unlock(&vcpu->kvm->lock); if (!kvm_is_ucontrol(vcpu->kvm)) { vcpu->arch.gmap = vcpu->kvm->arch.gmap; sca_add_vcpu(vcpu); } if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; /* make vcpu_load load the right gmap on the first trigger */ vcpu->arch.enabled_gmap = vcpu->arch.gmap; } static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) { if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) return true; return false; } static bool kvm_has_pckmo_ecc(struct kvm *kvm) { /* At least one ECC subfunction must be present */ return kvm_has_pckmo_subfunc(kvm, 32) || kvm_has_pckmo_subfunc(kvm, 33) || kvm_has_pckmo_subfunc(kvm, 34) || kvm_has_pckmo_subfunc(kvm, 40) || kvm_has_pckmo_subfunc(kvm, 41); } static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) { /* * If the AP instructions are not being interpreted and the MSAX3 * facility is not configured for the guest, there is nothing to set up. */ if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) return; vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); vcpu->arch.sie_block->eca &= ~ECA_APIE; vcpu->arch.sie_block->ecd &= ~ECD_ECC; if (vcpu->kvm->arch.crypto.apie) vcpu->arch.sie_block->eca |= ECA_APIE; /* Set up protected key support */ if (vcpu->kvm->arch.crypto.aes_kw) { vcpu->arch.sie_block->ecb3 |= ECB3_AES; /* ecc is also wrapped with AES key */ if (kvm_has_pckmo_ecc(vcpu->kvm)) vcpu->arch.sie_block->ecd |= ECD_ECC; } if (vcpu->kvm->arch.crypto.dea_kw) vcpu->arch.sie_block->ecb3 |= ECB3_DEA; } void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) { free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); vcpu->arch.sie_block->cbrlo = 0; } int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) { void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); if (!cbrlo_page) return -ENOMEM; vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); return 0; } static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) { struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; vcpu->arch.sie_block->ibc = model->ibc; if (test_kvm_facility(vcpu->kvm, 7)) vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); } static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) { int rc = 0; u16 uvrc, uvrrc; atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | CPUSTAT_SM | CPUSTAT_STOPPED); if (test_kvm_facility(vcpu->kvm, 78)) kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); else if (test_kvm_facility(vcpu->kvm, 8)) kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); kvm_s390_vcpu_setup_model(vcpu); /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ if (MACHINE_HAS_ESOP) vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; if (test_kvm_facility(vcpu->kvm, 9)) vcpu->arch.sie_block->ecb |= ECB_SRSI; if (test_kvm_facility(vcpu->kvm, 11)) vcpu->arch.sie_block->ecb |= ECB_PTF; if (test_kvm_facility(vcpu->kvm, 73)) vcpu->arch.sie_block->ecb |= ECB_TE; if (!kvm_is_ucontrol(vcpu->kvm)) vcpu->arch.sie_block->ecb |= ECB_SPECI; if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; if (test_kvm_facility(vcpu->kvm, 130)) vcpu->arch.sie_block->ecb2 |= ECB2_IEP; vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; if (sclp.has_cei) vcpu->arch.sie_block->eca |= ECA_CEI; if (sclp.has_ib) vcpu->arch.sie_block->eca |= ECA_IB; if (sclp.has_siif) vcpu->arch.sie_block->eca |= ECA_SII; if (sclp.has_sigpif) vcpu->arch.sie_block->eca |= ECA_SIGPI; if (test_kvm_facility(vcpu->kvm, 129)) { vcpu->arch.sie_block->eca |= ECA_VX; vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; } if (test_kvm_facility(vcpu->kvm, 139)) vcpu->arch.sie_block->ecd |= ECD_MEF; if (test_kvm_facility(vcpu->kvm, 156)) vcpu->arch.sie_block->ecd |= ECD_ETOKENF; if (vcpu->arch.sie_block->gd) { vcpu->arch.sie_block->eca |= ECA_AIV; VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); } vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); if (sclp.has_kss) kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); else vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; if (vcpu->kvm->arch.use_cmma) { rc = kvm_s390_vcpu_setup_cmma(vcpu); if (rc) return rc; } hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; vcpu->arch.sie_block->hpid = HPID_KVM; kvm_s390_vcpu_crypto_setup(vcpu); kvm_s390_vcpu_pci_setup(vcpu); mutex_lock(&vcpu->kvm->lock); if (kvm_s390_pv_is_protected(vcpu->kvm)) { rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); if (rc) kvm_s390_vcpu_unsetup_cmma(vcpu); } mutex_unlock(&vcpu->kvm->lock); return rc; } int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) { if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) return -EINVAL; return 0; } int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) { struct sie_page *sie_page; int rc; BUILD_BUG_ON(sizeof(struct sie_page) != 4096); sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); if (!sie_page) return -ENOMEM; vcpu->arch.sie_block = &sie_page->sie_block; vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); /* the real guest size will always be smaller than msl */ vcpu->arch.sie_block->mso = 0; vcpu->arch.sie_block->msl = sclp.hamax; vcpu->arch.sie_block->icpua = vcpu->vcpu_id; spin_lock_init(&vcpu->arch.local_int.lock); vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); seqcount_init(&vcpu->arch.cputm_seqcount); vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; kvm_clear_async_pf_completion_queue(vcpu); vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | KVM_SYNC_GPRS | KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_ARCH0 | KVM_SYNC_PFAULT | KVM_SYNC_DIAG318; vcpu->arch.acrs_loaded = false; kvm_s390_set_prefix(vcpu, 0); if (test_kvm_facility(vcpu->kvm, 64)) vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; if (test_kvm_facility(vcpu->kvm, 82)) vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; if (test_kvm_facility(vcpu->kvm, 133)) vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; if (test_kvm_facility(vcpu->kvm, 156)) vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; /* fprs can be synchronized via vrs, even if the guest has no vx. With * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. */ if (cpu_has_vx()) vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; else vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; if (kvm_is_ucontrol(vcpu->kvm)) { rc = __kvm_ucontrol_vcpu_init(vcpu); if (rc) goto out_free_sie_block; } VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); rc = kvm_s390_vcpu_setup(vcpu); if (rc) goto out_ucontrol_uninit; kvm_s390_update_topology_change_report(vcpu->kvm, 1); return 0; out_ucontrol_uninit: if (kvm_is_ucontrol(vcpu->kvm)) gmap_remove(vcpu->arch.gmap); out_free_sie_block: free_page((unsigned long)(vcpu->arch.sie_block)); return rc; } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); return kvm_s390_vcpu_has_irq(vcpu, 0); } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); } void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) { atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); exit_sie(vcpu); } void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) { atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); } static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) { atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); exit_sie(vcpu); } bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) { return atomic_read(&vcpu->arch.sie_block->prog20) & (PROG_BLOCK_SIE | PROG_REQUEST); } static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) { atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); } /* * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. * If the CPU is not running (e.g. waiting as idle) the function will * return immediately. */ void exit_sie(struct kvm_vcpu *vcpu) { kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); kvm_s390_vsie_kick(vcpu); while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) cpu_relax(); } /* Kick a guest cpu out of SIE to process a request synchronously */ void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) { __kvm_make_request(req, vcpu); kvm_s390_vcpu_request(vcpu); } static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, unsigned long end) { struct kvm *kvm = gmap->private; struct kvm_vcpu *vcpu; unsigned long prefix; unsigned long i; trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); if (gmap_is_shadow(gmap)) return; if (start >= 1UL << 31) /* We are only interested in prefix pages */ return; kvm_for_each_vcpu(i, vcpu, kvm) { /* match against both prefix pages */ prefix = kvm_s390_get_prefix(vcpu); if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", start, end); kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); } } } bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) { /* do not poll with more than halt_poll_max_steal percent of steal time */ if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= READ_ONCE(halt_poll_max_steal)) { vcpu->stat.halt_no_poll_steal++; return true; } return false; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { /* kvm common code refers to this, but never calls it */ BUG(); return 0; } static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = -EINVAL; switch (reg->id) { case KVM_REG_S390_TODPR: r = put_user(vcpu->arch.sie_block->todpr, (u32 __user *)reg->addr); break; case KVM_REG_S390_EPOCHDIFF: r = put_user(vcpu->arch.sie_block->epoch, (u64 __user *)reg->addr); break; case KVM_REG_S390_CPU_TIMER: r = put_user(kvm_s390_get_cpu_timer(vcpu), (u64 __user *)reg->addr); break; case KVM_REG_S390_CLOCK_COMP: r = put_user(vcpu->arch.sie_block->ckc, (u64 __user *)reg->addr); break; case KVM_REG_S390_PFTOKEN: r = put_user(vcpu->arch.pfault_token, (u64 __user *)reg->addr); break; case KVM_REG_S390_PFCOMPARE: r = put_user(vcpu->arch.pfault_compare, (u64 __user *)reg->addr); break; case KVM_REG_S390_PFSELECT: r = put_user(vcpu->arch.pfault_select, (u64 __user *)reg->addr); break; case KVM_REG_S390_PP: r = put_user(vcpu->arch.sie_block->pp, (u64 __user *)reg->addr); break; case KVM_REG_S390_GBEA: r = put_user(vcpu->arch.sie_block->gbea, (u64 __user *)reg->addr); break; default: break; } return r; } static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = -EINVAL; __u64 val; switch (reg->id) { case KVM_REG_S390_TODPR: r = get_user(vcpu->arch.sie_block->todpr, (u32 __user *)reg->addr); break; case KVM_REG_S390_EPOCHDIFF: r = get_user(vcpu->arch.sie_block->epoch, (u64 __user *)reg->addr); break; case KVM_REG_S390_CPU_TIMER: r = get_user(val, (u64 __user *)reg->addr); if (!r) kvm_s390_set_cpu_timer(vcpu, val); break; case KVM_REG_S390_CLOCK_COMP: r = get_user(vcpu->arch.sie_block->ckc, (u64 __user *)reg->addr); break; case KVM_REG_S390_PFTOKEN: r = get_user(vcpu->arch.pfault_token, (u64 __user *)reg->addr); if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) kvm_clear_async_pf_completion_queue(vcpu); break; case KVM_REG_S390_PFCOMPARE: r = get_user(vcpu->arch.pfault_compare, (u64 __user *)reg->addr); break; case KVM_REG_S390_PFSELECT: r = get_user(vcpu->arch.pfault_select, (u64 __user *)reg->addr); break; case KVM_REG_S390_PP: r = get_user(vcpu->arch.sie_block->pp, (u64 __user *)reg->addr); break; case KVM_REG_S390_GBEA: r = get_user(vcpu->arch.sie_block->gbea, (u64 __user *)reg->addr); break; default: break; } return r; } static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) { vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); kvm_clear_async_pf_completion_queue(vcpu); if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) kvm_s390_vcpu_stop(vcpu); kvm_s390_clear_local_irqs(vcpu); } static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) { /* Initial reset is a superset of the normal reset */ kvm_arch_vcpu_ioctl_normal_reset(vcpu); /* * This equals initial cpu reset in pop, but we don't switch to ESA. * We do not only reset the internal data, but also ... */ vcpu->arch.sie_block->gpsw.mask = 0; vcpu->arch.sie_block->gpsw.addr = 0; kvm_s390_set_prefix(vcpu, 0); kvm_s390_set_cpu_timer(vcpu, 0); vcpu->arch.sie_block->ckc = 0; memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; /* ... the data in sync regs */ memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); vcpu->run->s.regs.ckc = 0; vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; vcpu->run->psw_addr = 0; vcpu->run->psw_mask = 0; vcpu->run->s.regs.todpr = 0; vcpu->run->s.regs.cputm = 0; vcpu->run->s.regs.ckc = 0; vcpu->run->s.regs.pp = 0; vcpu->run->s.regs.gbea = 1; vcpu->run->s.regs.fpc = 0; /* * Do not reset these registers in the protected case, as some of * them are overlaid and they are not accessible in this case * anyway. */ if (!kvm_s390_pv_cpu_is_protected(vcpu)) { vcpu->arch.sie_block->gbea = 1; vcpu->arch.sie_block->pp = 0; vcpu->arch.sie_block->fpf &= ~FPF_BPBC; vcpu->arch.sie_block->todpr = 0; } } static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *regs = &vcpu->run->s.regs; /* Clear reset is a superset of the initial reset */ kvm_arch_vcpu_ioctl_initial_reset(vcpu); memset(®s->gprs, 0, sizeof(regs->gprs)); memset(®s->vrs, 0, sizeof(regs->vrs)); memset(®s->acrs, 0, sizeof(regs->acrs)); memset(®s->gscb, 0, sizeof(regs->gscb)); regs->etoken = 0; regs->etoken_extension = 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { vcpu_load(vcpu); memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { vcpu_load(vcpu); memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { int ret = 0; vcpu_load(vcpu); vcpu->run->s.regs.fpc = fpu->fpc; if (cpu_has_vx()) convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, (freg_t *) fpu->fprs); else memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); vcpu_put(vcpu); return ret; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { vcpu_load(vcpu); if (cpu_has_vx()) convert_vx_to_fp((freg_t *) fpu->fprs, (__vector128 *) vcpu->run->s.regs.vrs); else memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); fpu->fpc = vcpu->run->s.regs.fpc; vcpu_put(vcpu); return 0; } static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) { int rc = 0; if (!is_vcpu_stopped(vcpu)) rc = -EBUSY; else { vcpu->run->psw_mask = psw.mask; vcpu->run->psw_addr = psw.addr; } return rc; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; /* not implemented yet */ } #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ KVM_GUESTDBG_USE_HW_BP | \ KVM_GUESTDBG_ENABLE) int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { int rc = 0; vcpu_load(vcpu); vcpu->guest_debug = 0; kvm_s390_clear_bp_data(vcpu); if (dbg->control & ~VALID_GUESTDBG_FLAGS) { rc = -EINVAL; goto out; } if (!sclp.has_gpere) { rc = -EINVAL; goto out; } if (dbg->control & KVM_GUESTDBG_ENABLE) { vcpu->guest_debug = dbg->control; /* enforce guest PER */ kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); if (dbg->control & KVM_GUESTDBG_USE_HW_BP) rc = kvm_s390_import_bp_data(vcpu, dbg); } else { kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); vcpu->arch.guestdbg.last_bp = 0; } if (rc) { vcpu->guest_debug = 0; kvm_s390_clear_bp_data(vcpu); kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); } out: vcpu_put(vcpu); return rc; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int ret; vcpu_load(vcpu); /* CHECK_STOP and LOAD are not supported yet */ ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_OPERATING; vcpu_put(vcpu); return ret; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int rc = 0; vcpu_load(vcpu); /* user space knows about this interface - let it control the state */ kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); switch (mp_state->mp_state) { case KVM_MP_STATE_STOPPED: rc = kvm_s390_vcpu_stop(vcpu); break; case KVM_MP_STATE_OPERATING: rc = kvm_s390_vcpu_start(vcpu); break; case KVM_MP_STATE_LOAD: if (!kvm_s390_pv_cpu_is_protected(vcpu)) { rc = -ENXIO; break; } rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); break; case KVM_MP_STATE_CHECK_STOP: fallthrough; /* CHECK_STOP and LOAD are not supported yet */ default: rc = -ENXIO; } vcpu_put(vcpu); return rc; } static bool ibs_enabled(struct kvm_vcpu *vcpu) { return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); } static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) { retry: kvm_s390_vcpu_request_handled(vcpu); if (!kvm_request_pending(vcpu)) return 0; /* * If the guest prefix changed, re-arm the ipte notifier for the * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. * This ensures that the ipte instruction for this request has * already finished. We might race against a second unmapper that * wants to set the blocking bit. Lets just retry the request loop. */ if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { int rc; rc = gmap_mprotect_notify(vcpu->arch.gmap, kvm_s390_get_prefix(vcpu), PAGE_SIZE * 2, PROT_WRITE); if (rc) { kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); return rc; } goto retry; } if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { vcpu->arch.sie_block->ihcpu = 0xffff; goto retry; } if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { if (!ibs_enabled(vcpu)) { trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); } goto retry; } if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { if (ibs_enabled(vcpu)) { trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); } goto retry; } if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; goto retry; } if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { /* * Disable CMM virtualization; we will emulate the ESSA * instruction manually, in order to provide additional * functionalities needed for live migration. */ vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; goto retry; } if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { /* * Re-enable CMM virtualization if CMMA is available and * CMM has been used. */ if ((vcpu->kvm->arch.use_cmma) && (vcpu->kvm->mm->context.uses_cmm)) vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; goto retry; } /* we left the vsie handler, nothing to do, just clear the request */ kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); return 0; } static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) { struct kvm_vcpu *vcpu; union tod_clock clk; unsigned long i; preempt_disable(); store_tod_clock_ext(&clk); kvm->arch.epoch = gtod->tod - clk.tod; kvm->arch.epdx = 0; if (test_kvm_facility(kvm, 139)) { kvm->arch.epdx = gtod->epoch_idx - clk.ei; if (kvm->arch.epoch > gtod->tod) kvm->arch.epdx -= 1; } kvm_s390_vcpu_block_all(kvm); kvm_for_each_vcpu(i, vcpu, kvm) { vcpu->arch.sie_block->epoch = kvm->arch.epoch; vcpu->arch.sie_block->epdx = kvm->arch.epdx; } kvm_s390_vcpu_unblock_all(kvm); preempt_enable(); } int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) { if (!mutex_trylock(&kvm->lock)) return 0; __kvm_s390_set_tod_clock(kvm, gtod); mutex_unlock(&kvm->lock); return 1; } /** * kvm_arch_fault_in_page - fault-in guest page if necessary * @vcpu: The corresponding virtual cpu * @gpa: Guest physical address * @writable: Whether the page should be writable or not * * Make sure that a guest page has been faulted-in on the host. * * Return: Zero on success, negative error code otherwise. */ long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) { return gmap_fault(vcpu->arch.gmap, gpa, writable ? FAULT_FLAG_WRITE : 0); } static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, unsigned long token) { struct kvm_s390_interrupt inti; struct kvm_s390_irq irq; if (start_token) { irq.u.ext.ext_params2 = token; irq.type = KVM_S390_INT_PFAULT_INIT; WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); } else { inti.type = KVM_S390_INT_PFAULT_DONE; inti.parm64 = token; WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); } } bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); return true; } void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); } void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { /* s390 will always inject the page directly */ } bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) { /* * s390 will always inject the page directly, * but we still want check_async_completion to cleanup */ return true; } static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) { hva_t hva; struct kvm_arch_async_pf arch; if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) return false; if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != vcpu->arch.pfault_compare) return false; if (psw_extint_disabled(vcpu)) return false; if (kvm_s390_vcpu_has_irq(vcpu, 0)) return false; if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) return false; if (!vcpu->arch.gmap->pfault_enabled) return false; hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); hva += current->thread.gmap_addr & ~PAGE_MASK; if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) return false; return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); } static int vcpu_pre_run(struct kvm_vcpu *vcpu) { int rc, cpuflags; /* * On s390 notifications for arriving pages will be delivered directly * to the guest but the house keeping for completed pfaults is * handled outside the worker. */ kvm_check_async_pf_completion(vcpu); vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; if (need_resched()) schedule(); if (!kvm_is_ucontrol(vcpu->kvm)) { rc = kvm_s390_deliver_pending_interrupts(vcpu); if (rc || guestdbg_exit_pending(vcpu)) return rc; } rc = kvm_s390_handle_requests(vcpu); if (rc) return rc; if (guestdbg_enabled(vcpu)) { kvm_s390_backup_guest_per_regs(vcpu); kvm_s390_patch_guest_per_regs(vcpu); } clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); vcpu->arch.sie_block->icptcode = 0; cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); trace_kvm_s390_sie_enter(vcpu, cpuflags); return 0; } static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) { struct kvm_s390_pgm_info pgm_info = { .code = PGM_ADDRESSING, }; u8 opcode, ilen; int rc; VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); trace_kvm_s390_sie_fault(vcpu); /* * We want to inject an addressing exception, which is defined as a * suppressing or terminating exception. However, since we came here * by a DAT access exception, the PSW still points to the faulting * instruction since DAT exceptions are nullifying. So we've got * to look up the current opcode to get the length of the instruction * to be able to forward the PSW. */ rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); ilen = insn_length(opcode); if (rc < 0) { return rc; } else if (rc) { /* Instruction-Fetching Exceptions - we can't detect the ilen. * Forward by arbitrary ilc, injection will take care of * nullification if necessary. */ pgm_info = vcpu->arch.pgm; ilen = 4; } pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; kvm_s390_forward_psw(vcpu, ilen); return kvm_s390_inject_prog_irq(vcpu, &pgm_info); } static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) { struct mcck_volatile_info *mcck_info; struct sie_page *sie_page; VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", vcpu->arch.sie_block->icptcode); trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); if (guestdbg_enabled(vcpu)) kvm_s390_restore_guest_per_regs(vcpu); vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; if (exit_reason == -EINTR) { VCPU_EVENT(vcpu, 3, "%s", "machine check"); sie_page = container_of(vcpu->arch.sie_block, struct sie_page, sie_block); mcck_info = &sie_page->mcck_info; kvm_s390_reinject_machine_check(vcpu, mcck_info); return 0; } if (vcpu->arch.sie_block->icptcode > 0) { int rc = kvm_handle_sie_intercept(vcpu); if (rc != -EOPNOTSUPP) return rc; vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; return -EREMOTE; } else if (exit_reason != -EFAULT) { vcpu->stat.exit_null++; return 0; } else if (kvm_is_ucontrol(vcpu->kvm)) { vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; vcpu->run->s390_ucontrol.trans_exc_code = current->thread.gmap_addr; vcpu->run->s390_ucontrol.pgm_code = 0x10; return -EREMOTE; } else if (current->thread.gmap_pfault) { trace_kvm_s390_major_guest_pfault(vcpu); current->thread.gmap_pfault = 0; if (kvm_arch_setup_async_pf(vcpu)) return 0; vcpu->stat.pfault_sync++; return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); } return vcpu_post_run_fault_in_sie(vcpu); } #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) static int __vcpu_run(struct kvm_vcpu *vcpu) { int rc, exit_reason; struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; /* * We try to hold kvm->srcu during most of vcpu_run (except when run- * ning the guest), so that memslots (and other stuff) are protected */ kvm_vcpu_srcu_read_lock(vcpu); do { rc = vcpu_pre_run(vcpu); if (rc || guestdbg_exit_pending(vcpu)) break; kvm_vcpu_srcu_read_unlock(vcpu); /* * As PF_VCPU will be used in fault handler, between * guest_enter and guest_exit should be no uaccess. */ local_irq_disable(); guest_enter_irqoff(); __disable_cpu_timer_accounting(vcpu); local_irq_enable(); if (kvm_s390_pv_cpu_is_protected(vcpu)) { memcpy(sie_page->pv_grregs, vcpu->run->s.regs.gprs, sizeof(sie_page->pv_grregs)); } exit_reason = sie64a(vcpu->arch.sie_block, vcpu->run->s.regs.gprs); if (kvm_s390_pv_cpu_is_protected(vcpu)) { memcpy(vcpu->run->s.regs.gprs, sie_page->pv_grregs, sizeof(sie_page->pv_grregs)); /* * We're not allowed to inject interrupts on intercepts * that leave the guest state in an "in-between" state * where the next SIE entry will do a continuation. * Fence interrupts in our "internal" PSW. */ if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; } } local_irq_disable(); __enable_cpu_timer_accounting(vcpu); guest_exit_irqoff(); local_irq_enable(); kvm_vcpu_srcu_read_lock(vcpu); rc = vcpu_post_run(vcpu, exit_reason); } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); kvm_vcpu_srcu_read_unlock(vcpu); return rc; } static void sync_regs_fmt2(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; struct runtime_instr_cb *riccb; struct gs_cb *gscb; riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; } if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { vcpu->arch.pfault_token = kvm_run->s.regs.pft; vcpu->arch.pfault_select = kvm_run->s.regs.pfs; vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) kvm_clear_async_pf_completion_queue(vcpu); } if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); } /* * If userspace sets the riccb (e.g. after migration) to a valid state, * we should enable RI here instead of doing the lazy enablement. */ if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && test_kvm_facility(vcpu->kvm, 64) && riccb->v && !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); vcpu->arch.sie_block->ecb3 |= ECB3_RI; } /* * If userspace sets the gscb (e.g. after migration) to non-zero, * we should enable GS here instead of doing the lazy enablement. */ if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && test_kvm_facility(vcpu->kvm, 133) && gscb->gssm && !vcpu->arch.gs_enabled) { VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); vcpu->arch.sie_block->ecb |= ECB_GS; vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; vcpu->arch.gs_enabled = 1; } if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && test_kvm_facility(vcpu->kvm, 82)) { vcpu->arch.sie_block->fpf &= ~FPF_BPBC; vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; } if (MACHINE_HAS_GS) { preempt_disable(); local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); if (current->thread.gs_cb) { vcpu->arch.host_gscb = current->thread.gs_cb; save_gs_cb(vcpu->arch.host_gscb); } if (vcpu->arch.gs_enabled) { current->thread.gs_cb = (struct gs_cb *) &vcpu->run->s.regs.gscb; restore_gs_cb(current->thread.gs_cb); } preempt_enable(); } /* SIE will load etoken directly from SDNX and therefore kvm_run */ } static void sync_regs(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); /* some control register changes require a tlb flush */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; } save_access_regs(vcpu->arch.host_acrs); restore_access_regs(vcpu->run->s.regs.acrs); vcpu->arch.acrs_loaded = true; kvm_s390_fpu_load(vcpu->run); /* Sync fmt2 only data */ if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { sync_regs_fmt2(vcpu); } else { /* * In several places we have to modify our internal view to * not do things that are disallowed by the ultravisor. For * example we must not inject interrupts after specific exits * (e.g. 112 prefix page not secure). We do this by turning * off the machine check, external and I/O interrupt bits * of our PSW copy. To avoid getting validity intercepts, we * do only accept the condition code from userspace. */ vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & PSW_MASK_CC; } kvm_run->kvm_dirty_regs = 0; } static void store_regs_fmt2(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; if (MACHINE_HAS_GS) { preempt_disable(); local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); if (vcpu->arch.gs_enabled) save_gs_cb(current->thread.gs_cb); current->thread.gs_cb = vcpu->arch.host_gscb; restore_gs_cb(vcpu->arch.host_gscb); if (!vcpu->arch.host_gscb) local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); vcpu->arch.host_gscb = NULL; preempt_enable(); } /* SIE will save etoken directly into SDNX and therefore kvm_run */ } static void store_regs(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; kvm_run->s.regs.pft = vcpu->arch.pfault_token; kvm_run->s.regs.pfs = vcpu->arch.pfault_select; kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; save_access_regs(vcpu->run->s.regs.acrs); restore_access_regs(vcpu->arch.host_acrs); vcpu->arch.acrs_loaded = false; kvm_s390_fpu_store(vcpu->run); if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) store_regs_fmt2(vcpu); } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; DECLARE_KERNEL_FPU_ONSTACK32(fpu); int rc; /* * Running a VM while dumping always has the potential to * produce inconsistent dump data. But for PV vcpus a SIE * entry while dumping could also lead to a fatal validity * intercept which we absolutely want to avoid. */ if (vcpu->kvm->arch.pv.dumping) return -EINVAL; if (kvm_run->immediate_exit) return -EINTR; if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) return -EINVAL; vcpu_load(vcpu); if (guestdbg_exit_pending(vcpu)) { kvm_s390_prepare_debug_exit(vcpu); rc = 0; goto out; } kvm_sigset_activate(vcpu); /* * no need to check the return value of vcpu_start as it can only have * an error for protvirt, but protvirt means user cpu state */ if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { kvm_s390_vcpu_start(vcpu); } else if (is_vcpu_stopped(vcpu)) { pr_err_ratelimited("can't run stopped vcpu %d\n", vcpu->vcpu_id); rc = -EINVAL; goto out; } kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); sync_regs(vcpu); enable_cpu_timer_accounting(vcpu); might_fault(); rc = __vcpu_run(vcpu); if (signal_pending(current) && !rc) { kvm_run->exit_reason = KVM_EXIT_INTR; rc = -EINTR; } if (guestdbg_exit_pending(vcpu) && !rc) { kvm_s390_prepare_debug_exit(vcpu); rc = 0; } if (rc == -EREMOTE) { /* userspace support is needed, kvm_run has been prepared */ rc = 0; } disable_cpu_timer_accounting(vcpu); store_regs(vcpu); kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); kvm_sigset_deactivate(vcpu); vcpu->stat.exit_userspace++; out: vcpu_put(vcpu); return rc; } /* * store status at address * we use have two special cases: * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit * KVM_S390_STORE_STATUS_PREFIXED: -> prefix */ int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) { unsigned char archmode = 1; freg_t fprs[NUM_FPRS]; unsigned int px; u64 clkcomp, cputm; int rc; px = kvm_s390_get_prefix(vcpu); if (gpa == KVM_S390_STORE_STATUS_NOADDR) { if (write_guest_abs(vcpu, 163, &archmode, 1)) return -EFAULT; gpa = 0; } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { if (write_guest_real(vcpu, 163, &archmode, 1)) return -EFAULT; gpa = px; } else gpa -= __LC_FPREGS_SAVE_AREA; /* manually convert vector registers if necessary */ if (cpu_has_vx()) { convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, fprs, 128); } else { rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, vcpu->run->s.regs.fprs, 128); } rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, vcpu->run->s.regs.gprs, 128); rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, &vcpu->arch.sie_block->gpsw, 16); rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, &px, 4); rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, &vcpu->run->s.regs.fpc, 4); rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, &vcpu->arch.sie_block->todpr, 4); cputm = kvm_s390_get_cpu_timer(vcpu); rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, &cputm, 8); clkcomp = vcpu->arch.sie_block->ckc >> 8; rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, &clkcomp, 8); rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, &vcpu->run->s.regs.acrs, 64); rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, &vcpu->arch.sie_block->gcr, 128); return rc ? -EFAULT : 0; } int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) { /* * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy * switch in the run ioctl. Let's update our copies before we save * it into the save area */ kvm_s390_fpu_store(vcpu->run); save_access_regs(vcpu->run->s.regs.acrs); return kvm_s390_store_status_unloaded(vcpu, addr); } static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) { kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); } static void __disable_ibs_on_all_vcpus(struct kvm *kvm) { unsigned long i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { __disable_ibs_on_vcpu(vcpu); } } static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) { if (!sclp.has_ibs) return; kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); } int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) { int i, online_vcpus, r = 0, started_vcpus = 0; if (!is_vcpu_stopped(vcpu)) return 0; trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); /* Only one cpu at a time may enter/leave the STOPPED state. */ spin_lock(&vcpu->kvm->arch.start_stop_lock); online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); /* Let's tell the UV that we want to change into the operating state */ if (kvm_s390_pv_cpu_is_protected(vcpu)) { r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); if (r) { spin_unlock(&vcpu->kvm->arch.start_stop_lock); return r; } } for (i = 0; i < online_vcpus; i++) { if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) started_vcpus++; } if (started_vcpus == 0) { /* we're the only active VCPU -> speed it up */ __enable_ibs_on_vcpu(vcpu); } else if (started_vcpus == 1) { /* * As we are starting a second VCPU, we have to disable * the IBS facility on all VCPUs to remove potentially * outstanding ENABLE requests. */ __disable_ibs_on_all_vcpus(vcpu->kvm); } kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); /* * The real PSW might have changed due to a RESTART interpreted by the * ultravisor. We block all interrupts and let the next sie exit * refresh our view. */ if (kvm_s390_pv_cpu_is_protected(vcpu)) vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; /* * Another VCPU might have used IBS while we were offline. * Let's play safe and flush the VCPU at startup. */ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); spin_unlock(&vcpu->kvm->arch.start_stop_lock); return 0; } int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) { int i, online_vcpus, r = 0, started_vcpus = 0; struct kvm_vcpu *started_vcpu = NULL; if (is_vcpu_stopped(vcpu)) return 0; trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); /* Only one cpu at a time may enter/leave the STOPPED state. */ spin_lock(&vcpu->kvm->arch.start_stop_lock); online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); /* Let's tell the UV that we want to change into the stopped state */ if (kvm_s390_pv_cpu_is_protected(vcpu)) { r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); if (r) { spin_unlock(&vcpu->kvm->arch.start_stop_lock); return r; } } /* * Set the VCPU to STOPPED and THEN clear the interrupt flag, * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders * have been fully processed. This will ensure that the VCPU * is kept BUSY if another VCPU is inquiring with SIGP SENSE. */ kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); kvm_s390_clear_stop_irq(vcpu); __disable_ibs_on_vcpu(vcpu); for (i = 0; i < online_vcpus; i++) { struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); if (!is_vcpu_stopped(tmp)) { started_vcpus++; started_vcpu = tmp; } } if (started_vcpus == 1) { /* * As we only have one VCPU left, we want to enable the * IBS facility for that VCPU to speed it up. */ __enable_ibs_on_vcpu(started_vcpu); } spin_unlock(&vcpu->kvm->arch.start_stop_lock); return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_S390_CSS_SUPPORT: if (!vcpu->kvm->arch.css_support) { vcpu->kvm->arch.css_support = 1; VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); trace_kvm_s390_enable_css(vcpu->kvm); } r = 0; break; default: r = -EINVAL; break; } return r; } static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, struct kvm_s390_mem_op *mop) { void __user *uaddr = (void __user *)mop->buf; void *sida_addr; int r = 0; if (mop->flags || !mop->size) return -EINVAL; if (mop->size + mop->sida_offset < mop->size) return -EINVAL; if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) return -E2BIG; if (!kvm_s390_pv_cpu_is_protected(vcpu)) return -EINVAL; sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; switch (mop->op) { case KVM_S390_MEMOP_SIDA_READ: if (copy_to_user(uaddr, sida_addr, mop->size)) r = -EFAULT; break; case KVM_S390_MEMOP_SIDA_WRITE: if (copy_from_user(sida_addr, uaddr, mop->size)) r = -EFAULT; break; } return r; } static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, struct kvm_s390_mem_op *mop) { void __user *uaddr = (void __user *)mop->buf; enum gacc_mode acc_mode; void *tmpbuf = NULL; int r; r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | KVM_S390_MEMOP_F_CHECK_ONLY | KVM_S390_MEMOP_F_SKEY_PROTECTION); if (r) return r; if (mop->ar >= NUM_ACRS) return -EINVAL; if (kvm_s390_pv_cpu_is_protected(vcpu)) return -EINVAL; if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { tmpbuf = vmalloc(mop->size); if (!tmpbuf) return -ENOMEM; } acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, acc_mode, mop->key); goto out_inject; } if (acc_mode == GACC_FETCH) { r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size, mop->key); if (r) goto out_inject; if (copy_to_user(uaddr, tmpbuf, mop->size)) { r = -EFAULT; goto out_free; } } else { if (copy_from_user(tmpbuf, uaddr, mop->size)) { r = -EFAULT; goto out_free; } r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size, mop->key); } out_inject: if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); out_free: vfree(tmpbuf); return r; } static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, struct kvm_s390_mem_op *mop) { int r, srcu_idx; srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); switch (mop->op) { case KVM_S390_MEMOP_LOGICAL_READ: case KVM_S390_MEMOP_LOGICAL_WRITE: r = kvm_s390_vcpu_mem_op(vcpu, mop); break; case KVM_S390_MEMOP_SIDA_READ: case KVM_S390_MEMOP_SIDA_WRITE: /* we are locked against sida going away by the vcpu->mutex */ r = kvm_s390_vcpu_sida_op(vcpu, mop); break; default: r = -EINVAL; } srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); return r; } long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int rc; switch (ioctl) { case KVM_S390_IRQ: { struct kvm_s390_irq s390irq; if (copy_from_user(&s390irq, argp, sizeof(s390irq))) return -EFAULT; rc = kvm_s390_inject_vcpu(vcpu, &s390irq); break; } case KVM_S390_INTERRUPT: { struct kvm_s390_interrupt s390int; struct kvm_s390_irq s390irq = {}; if (copy_from_user(&s390int, argp, sizeof(s390int))) return -EFAULT; if (s390int_to_s390irq(&s390int, &s390irq)) return -EINVAL; rc = kvm_s390_inject_vcpu(vcpu, &s390irq); break; } default: rc = -ENOIOCTLCMD; break; } /* * To simplify single stepping of userspace-emulated instructions, * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see * should_handle_per_ifetch()). However, if userspace emulation injects * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens * after (and not before) the interrupt delivery. */ if (!rc) vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; return rc; } static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, struct kvm_pv_cmd *cmd) { struct kvm_s390_pv_dmp dmp; void *data; int ret; /* Dump initialization is a prerequisite */ if (!vcpu->kvm->arch.pv.dumping) return -EINVAL; if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) return -EFAULT; /* We only handle this subcmd right now */ if (dmp.subcmd != KVM_PV_DUMP_CPU) return -EINVAL; /* CPU dump length is the same as create cpu storage donation. */ if (dmp.buff_len != uv_info.guest_cpu_stor_len) return -EINVAL; data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); if (!data) return -ENOMEM; ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", vcpu->vcpu_id, cmd->rc, cmd->rrc); if (ret) ret = -EINVAL; /* On success copy over the dump data */ if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) ret = -EFAULT; kvfree(data); return ret; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int idx; long r; u16 rc, rrc; vcpu_load(vcpu); switch (ioctl) { case KVM_S390_STORE_STATUS: idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvm_s390_store_status_unloaded(vcpu, arg); srcu_read_unlock(&vcpu->kvm->srcu, idx); break; case KVM_S390_SET_INITIAL_PSW: { psw_t psw; r = -EFAULT; if (copy_from_user(&psw, argp, sizeof(psw))) break; r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); break; } case KVM_S390_CLEAR_RESET: r = 0; kvm_arch_vcpu_ioctl_clear_reset(vcpu); if (kvm_s390_pv_cpu_is_protected(vcpu)) { r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", rc, rrc); } break; case KVM_S390_INITIAL_RESET: r = 0; kvm_arch_vcpu_ioctl_initial_reset(vcpu); if (kvm_s390_pv_cpu_is_protected(vcpu)) { r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_CPU_RESET_INITIAL, &rc, &rrc); VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", rc, rrc); } break; case KVM_S390_NORMAL_RESET: r = 0; kvm_arch_vcpu_ioctl_normal_reset(vcpu); if (kvm_s390_pv_cpu_is_protected(vcpu)) { r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_CPU_RESET, &rc, &rrc); VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", rc, rrc); } break; case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EINVAL; if (kvm_s390_pv_cpu_is_protected(vcpu)) break; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) break; if (ioctl == KVM_SET_ONE_REG) r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); else r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); break; } #ifdef CONFIG_KVM_S390_UCONTROL case KVM_S390_UCAS_MAP: { struct kvm_s390_ucas_mapping ucasmap; if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { r = -EFAULT; break; } if (!kvm_is_ucontrol(vcpu->kvm)) { r = -EINVAL; break; } r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, ucasmap.vcpu_addr, ucasmap.length); break; } case KVM_S390_UCAS_UNMAP: { struct kvm_s390_ucas_mapping ucasmap; if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { r = -EFAULT; break; } if (!kvm_is_ucontrol(vcpu->kvm)) { r = -EINVAL; break; } r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, ucasmap.length); break; } #endif case KVM_S390_VCPU_FAULT: { r = gmap_fault(vcpu->arch.gmap, arg, 0); break; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) break; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); break; } case KVM_S390_MEM_OP: { struct kvm_s390_mem_op mem_op; if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); else r = -EFAULT; break; } case KVM_S390_SET_IRQ_STATE: { struct kvm_s390_irq_state irq_state; r = -EFAULT; if (copy_from_user(&irq_state, argp, sizeof(irq_state))) break; if (irq_state.len > VCPU_IRQS_MAX_BUF || irq_state.len == 0 || irq_state.len % sizeof(struct kvm_s390_irq) > 0) { r = -EINVAL; break; } /* do not use irq_state.flags, it will break old QEMUs */ r = kvm_s390_set_irq_state(vcpu, (void __user *) irq_state.buf, irq_state.len); break; } case KVM_S390_GET_IRQ_STATE: { struct kvm_s390_irq_state irq_state; r = -EFAULT; if (copy_from_user(&irq_state, argp, sizeof(irq_state))) break; if (irq_state.len == 0) { r = -EINVAL; break; } /* do not use irq_state.flags, it will break old QEMUs */ r = kvm_s390_get_irq_state(vcpu, (__u8 __user *) irq_state.buf, irq_state.len); break; } case KVM_S390_PV_CPU_COMMAND: { struct kvm_pv_cmd cmd; r = -EINVAL; if (!is_prot_virt_host()) break; r = -EFAULT; if (copy_from_user(&cmd, argp, sizeof(cmd))) break; r = -EINVAL; if (cmd.flags) break; /* We only handle this cmd right now */ if (cmd.cmd != KVM_PV_DUMP) break; r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); /* Always copy over UV rc / rrc data */ if (copy_to_user((__u8 __user *)argp, &cmd.rc, sizeof(cmd.rc) + sizeof(cmd.rrc))) r = -EFAULT; break; } default: r = -ENOTTY; } vcpu_put(vcpu); return r; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { #ifdef CONFIG_KVM_S390_UCONTROL if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) && (kvm_is_ucontrol(vcpu->kvm))) { vmf->page = virt_to_page(vcpu->arch.sie_block); get_page(vmf->page); return 0; } #endif return VM_FAULT_SIGBUS; } bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) { return true; } /* Section: memory related */ int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { gpa_t size; /* When we are protected, we should not change the memory slots */ if (kvm_s390_pv_get_handle(kvm)) return -EINVAL; if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { /* * A few sanity checks. We can have memory slots which have to be * located/ended at a segment boundary (1MB). The memory in userland is * ok to be fragmented into various different vmas. It is okay to mmap() * and munmap() stuff in this slot after doing this call at any time */ if (new->userspace_addr & 0xffffful) return -EINVAL; size = new->npages * PAGE_SIZE; if (size & 0xffffful) return -EINVAL; if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) return -EINVAL; } if (!kvm->arch.migration_mode) return 0; /* * Turn off migration mode when: * - userspace creates a new memslot with dirty logging off, * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and * dirty logging is turned off. * Migration mode expects dirty page logging being enabled to store * its dirty bitmap. */ if (change != KVM_MR_DELETE && !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) WARN(kvm_s390_vm_stop_migration(kvm), "Failed to stop migration mode"); return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { int rc = 0; switch (change) { case KVM_MR_DELETE: rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, old->npages * PAGE_SIZE); break; case KVM_MR_MOVE: rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, old->npages * PAGE_SIZE); if (rc) break; fallthrough; case KVM_MR_CREATE: rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, new->base_gfn * PAGE_SIZE, new->npages * PAGE_SIZE); break; case KVM_MR_FLAGS_ONLY: break; default: WARN(1, "Unknown KVM MR CHANGE: %d\n", change); } if (rc) pr_warn("failed to commit memory region\n"); return; } static inline unsigned long nonhyp_mask(int i) { unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); } static int __init kvm_s390_init(void) { int i, r; if (!sclp.has_sief2) { pr_info("SIE is not available\n"); return -ENODEV; } if (nested && hpage) { pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); return -EINVAL; } for (i = 0; i < 16; i++) kvm_s390_fac_base[i] |= stfle_fac_list[i] & nonhyp_mask(i); r = __kvm_s390_init(); if (r) return r; r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); if (r) { __kvm_s390_exit(); return r; } return 0; } static void __exit kvm_s390_exit(void) { kvm_exit(); __kvm_s390_exit(); } module_init(kvm_s390_init); module_exit(kvm_s390_exit); /* * Enable autoloading of the kvm module. * Note that we add the module alias here instead of virt/kvm/kvm_main.c * since x86 takes a different approach. */ #include MODULE_ALIAS_MISCDEV(KVM_MINOR); MODULE_ALIAS("devname:kvm");