/* log1pl.c * * Relative error logarithm * Natural logarithm of 1+x, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, log1pl(); * * y = log1pl( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of 1+x. * * The argument 1+x is separated into its exponent and fractional * parts. If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). * * Otherwise, setting z = 2(w-1)/(w+1), * * log(w) = z + z^3 P(z)/Q(z). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -1, 8 100000 1.9e-34 4.3e-35 */ /* Copyright 2001 by Stephen L. Moshier This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include #include #include #include /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) * 1/sqrt(2) <= 1+x < sqrt(2) * Theoretical peak relative error = 5.3e-37, * relative peak error spread = 2.3e-14 */ static const _Float128 P12 = L(1.538612243596254322971797716843006400388E-6), P11 = L(4.998469661968096229986658302195402690910E-1), P10 = L(2.321125933898420063925789532045674660756E1), P9 = L(4.114517881637811823002128927449878962058E2), P8 = L(3.824952356185897735160588078446136783779E3), P7 = L(2.128857716871515081352991964243375186031E4), P6 = L(7.594356839258970405033155585486712125861E4), P5 = L(1.797628303815655343403735250238293741397E5), P4 = L(2.854829159639697837788887080758954924001E5), P3 = L(3.007007295140399532324943111654767187848E5), P2 = L(2.014652742082537582487669938141683759923E5), P1 = L(7.771154681358524243729929227226708890930E4), P0 = L(1.313572404063446165910279910527789794488E4), /* Q12 = 1.000000000000000000000000000000000000000E0L, */ Q11 = L(4.839208193348159620282142911143429644326E1), Q10 = L(9.104928120962988414618126155557301584078E2), Q9 = L(9.147150349299596453976674231612674085381E3), Q8 = L(5.605842085972455027590989944010492125825E4), Q7 = L(2.248234257620569139969141618556349415120E5), Q6 = L(6.132189329546557743179177159925690841200E5), Q5 = L(1.158019977462989115839826904108208787040E6), Q4 = L(1.514882452993549494932585972882995548426E6), Q3 = L(1.347518538384329112529391120390701166528E6), Q2 = L(7.777690340007566932935753241556479363645E5), Q1 = L(2.626900195321832660448791748036714883242E5), Q0 = L(3.940717212190338497730839731583397586124E4); /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 1.1e-35, * relative peak error spread 1.1e-9 */ static const _Float128 R5 = L(-8.828896441624934385266096344596648080902E-1), R4 = L(8.057002716646055371965756206836056074715E1), R3 = L(-2.024301798136027039250415126250455056397E3), R2 = L(2.048819892795278657810231591630928516206E4), R1 = L(-8.977257995689735303686582344659576526998E4), R0 = L(1.418134209872192732479751274970992665513E5), /* S6 = 1.000000000000000000000000000000000000000E0L, */ S5 = L(-1.186359407982897997337150403816839480438E2), S4 = L(3.998526750980007367835804959888064681098E3), S3 = L(-5.748542087379434595104154610899551484314E4), S2 = L(4.001557694070773974936904547424676279307E5), S1 = L(-1.332535117259762928288745111081235577029E6), S0 = L(1.701761051846631278975701529965589676574E6); /* C1 + C2 = ln 2 */ static const _Float128 C1 = L(6.93145751953125E-1); static const _Float128 C2 = L(1.428606820309417232121458176568075500134E-6); static const _Float128 sqrth = L(0.7071067811865475244008443621048490392848); /* ln (2^16384 * (1 - 2^-113)) */ static const _Float128 zero = 0; _Float128 __log1pl (_Float128 xm1) { _Float128 x, y, z, r, s; ieee854_long_double_shape_type u; int32_t hx; int e; /* Test for NaN or infinity input. */ u.value = xm1; hx = u.parts32.w0; if ((hx & 0x7fffffff) >= 0x7fff0000) return xm1 + fabsl (xm1); /* log1p(+- 0) = +- 0. */ if (((hx & 0x7fffffff) == 0) && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) return xm1; if ((hx & 0x7fffffff) < 0x3f8e0000) { math_check_force_underflow (xm1); if ((int) xm1 == 0) return xm1; } if (xm1 >= L(0x1p113)) x = xm1; else x = xm1 + 1; /* log1p(-1) = -inf */ if (x <= 0) { if (x == 0) return (-1 / zero); /* log1p(-1) = -inf */ else return (zero / (x - x)); } /* Separate mantissa from exponent. */ /* Use frexp used so that denormal numbers will be handled properly. */ x = __frexpl (x, &e); /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), where z = 2(x-1)/x+1). */ if ((e > 2) || (e < -2)) { if (x < sqrth) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; z = x - L(0.5); y = L(0.5) * z + L(0.5); } else { /* 2 (x-1)/(x+1) */ z = x - L(0.5); z -= L(0.5); y = L(0.5) * x + L(0.5); } x = z / y; z = x * x; r = ((((R5 * z + R4) * z + R3) * z + R2) * z + R1) * z + R0; s = (((((z + S5) * z + S4) * z + S3) * z + S2) * z + S1) * z + S0; z = x * (z * r / s); z = z + e * C2; z = z + x; z = z + e * C1; return (z); } /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ if (x < sqrth) { e -= 1; if (e != 0) x = 2 * x - 1; /* 2x - 1 */ else x = xm1; } else { if (e != 0) x = x - 1; else x = xm1; } z = x * x; r = (((((((((((P12 * x + P11) * x + P10) * x + P9) * x + P8) * x + P7) * x + P6) * x + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0; s = (((((((((((x + Q11) * x + Q10) * x + Q9) * x + Q8) * x + Q7) * x + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; y = x * (z * r / s); y = y + e * C2; z = y - L(0.5) * z; z = z + x; z = z + e * C1; return (z); }