/* * usb-mkl27z.c - USB driver for MKL27Z * * Copyright (C) 2016 Flying Stone Technology * Author: NIIBE Yutaka <gniibe@fsij.org> * * This file is a part of Chopstx, a thread library for embedded. * * Chopstx is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Chopstx is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * As additional permission under GNU GPL version 3 section 7, you may * distribute non-source form of the Program without the copy of the * GNU GPL normally required by section 4, provided you inform the * receipents of GNU GPL by a written offer. * */ #include <stdint.h> #include <stdlib.h> #include <string.h> #include "usb_lld.h" struct endpoint_ctl { uint32_t rx_odd: 1; uint32_t tx_odd: 1; }; static struct endpoint_ctl ep[16]; struct USB_CONF { const uint8_t PERID; /* Peripheral ID register */ uint8_t rsvd0[3]; /* */ const uint8_t IDCOMP; /* Peripheral ID Complement register */ uint8_t rsvd1[3]; /* */ const uint8_t REV; /* Peripheral Revision register */ uint8_t rsvd2[3]; /* */ volatile uint8_t ADDINFO; /* Peripheral Additional Info register */ }; static struct USB_CONF *const USB_CONF = (struct USB_CONF *const) 0x40072000; struct USB_CTRL0 { volatile uint8_t OTGCTL; /* OTG Control register */ }; static struct USB_CTRL0 *const USB_CTRL0 = (struct USB_CTRL0 *const)0x4007201c; struct USB_CTRL1 { volatile uint8_t ISTAT; /* Interrupt Status register */ uint8_t rsvd5[3]; /* */ volatile uint8_t INTEN; /* Interrupt Enable register */ uint8_t rsvd6[3]; /* */ volatile uint8_t ERRSTAT; /* Error Interrupt Status register */ uint8_t rsvd7[3]; /* */ volatile uint8_t ERREN; /* Error Interrupt Enable register */ uint8_t rsvd8[3]; /* */ volatile uint8_t STAT; /* Status register */ uint8_t rsvd9[3]; /* */ volatile uint8_t CTL; /* Control register */ uint8_t rsvd10[3]; /* */ volatile uint8_t ADDR; /* Address register */ uint8_t rsvd11[3]; /* */ volatile uint8_t BDTPAGE1; /* BDT Page register 1 */ uint8_t rsvd12[3]; /* */ volatile uint8_t FRMNUML; /* Frame Number register Low */ uint8_t rsvd13[3]; /* */ volatile uint8_t FRMNUMH; /* Frame Number register High */ uint8_t rsvd14[11]; /* */ volatile uint8_t BDTPAGE2; /* BDT Page Register 2 */ uint8_t rsvd15[3]; /* */ volatile uint8_t BDTPAGE3; /* BDT Page Register 3 */ }; static struct USB_CTRL1 *const USB_CTRL1 = (struct USB_CTRL1 *const)0x40072080; /* Interrupt source bits */ #define USB_IS_STALL (1 << 7) #define USB_IS_RESUME (1 << 5) #define USB_IS_SLEEP (1 << 4) #define USB_IS_TOKDNE (1 << 3) #define USB_IS_SOFTOK (1 << 2) #define USB_IS_ERROR (1 << 1) #define USB_IS_USBRST (1 << 0) struct USB_ENDPT { volatile uint8_t EP; /* Endpoint Control register */ uint8_t rsvd17[3]; }; static struct USB_ENDPT *const USB_ENDPT = (struct USB_ENDPT *const)0x400720c0; struct USB_CTRL2 { volatile uint8_t USBCTRL; /* USB Control register */ uint8_t rsvd33[3]; /* */ volatile uint8_t OBSERVE; /* USB OTG Observe register */ uint8_t rsvd34[3]; /* */ volatile uint8_t CONTROL; /* USB OTG Control register */ uint8_t rsvd35[3]; /* */ volatile uint8_t USBTRC0; /* USB Transceiver Control register 0 */ uint8_t rsvd36[7]; /* */ volatile uint8_t USBFRMADJUST; /* Frame Adjut Register */ }; static struct USB_CTRL2 *const USB_CTRL2 = (struct USB_CTRL2 *const)0x40072100; /* Buffer Descriptor */ struct BD { volatile uint32_t ctrl; volatile void *buf; }; /* uint32_t rsvd0 : 2; volatile uint32_t STALL: 1; volatile uint32_t DTS: 1; volatile uint32_t NINC: 1; volatile uint32_t KEEP: 1; volatile uint32_t DATA01: 1; volatile uint32_t OWN: 1; uint32_t rsvd1: 8; volatile uint32_t BC: 10; uint32_t rsvd2: 6; */ #define TOK_PID(ctrl) ((ctrl >> 2) & 0x0f) extern uint8_t __usb_bdt__; static struct BD *const BD_table = (struct BD *const)&__usb_bdt__; static uint8_t setup[8]; /* bmRequestType, bRequest */ /* Value: 2-byte */ /* Index: 2-byte */ /* Length: 2-byte */ static void kl27z_usb_init (void) { int i; memset (ep, 0, sizeof (ep)); memset (BD_table, 0, 16 * 2 * 2 * sizeof (struct BD)); /* D+ pull up */ USB_CTRL0->OTGCTL = 0x80; USB_CTRL1->ERREN = 0xff; USB_CTRL1->BDTPAGE1 = ((uint32_t)BD_table) >> 8; USB_CTRL1->BDTPAGE2 = ((uint32_t)BD_table) >> 16; USB_CTRL1->BDTPAGE3 = ((uint32_t)BD_table) >> 24; /* Not suspended, Pull-down disabled. */ USB_CTRL2->USBCTRL = 0x00; /* DP Pullup in non-OTG device mode. */ USB_CTRL2->CONTROL = 0x10; /* Disable all endpoints. */ for (i = 0; i < 16; i++) USB_ENDPT[i].EP = 0; /* * Enable USB FS communication module, clearing all ODD-bits * for BDT. */ USB_CTRL1->CTL = 0x03; /* ??? How we can ask re-enumeration? Is only hard RESET enough? */ } static void kl27z_set_daddr (uint8_t daddr) { USB_CTRL1->ADDR = daddr; } static void kl27z_prepare_ep0_setup (void) { /* Endpoint 0, TX=0. */ BD_table[ep[0].rx_odd].ctrl = 0x00080088; /* Len=8, OWN=1, DATA01=0, DTS=1 */ BD_table[ep[0].rx_odd].buf = setup; BD_table[!ep[0].rx_odd].ctrl = 0x0000; /* OWN=0 */ BD_table[!ep[0].rx_odd].buf = NULL; } static void kl27z_prepare_ep0_in (const void *buf, uint8_t len, int data01) { /* Endpoint 0, TX=1 *//* OWN=1, DTS=1 */ BD_table[2+ep[0].tx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6); BD_table[2+ep[0].tx_odd].buf = (void *)buf; } static void kl27z_prepare_ep0_out (void *buf, uint8_t len, int data01) { /* Endpoint 0, TX=0 *//* OWN=1, DTS=1 */ BD_table[ep[0].rx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6); BD_table[ep[0].rx_odd].buf = buf; } static int kl27z_ep_is_disabled (uint8_t n) { return (USB_ENDPT[n].EP == 0); } static int kl27z_ep_is_stall (uint8_t n) { return (USB_ENDPT[n].EP & 0x02) >> 1; } static void kl27z_ep_stall (uint8_t n) { USB_ENDPT[n].EP |= 0x02; } static void kl27z_ep_clear_stall (uint8_t n) { USB_ENDPT[n].EP &= ~0x02; } static void kl27z_ep_clear_dtog (int rx, uint8_t n) { uint32_t config; if (!kl27z_ep_is_stall (n)) /* Just in case, when the endpoint is active */ kl27z_ep_stall (n); if (rx) { config = BD_table[4*n+ep[n].rx_odd].ctrl; BD_table[4*n+!ep[n].rx_odd].ctrl &= ~(1 << 6); if ((config & 0x0080)) /* OWN already? */ { /* * How to update BDT entry which is owned by USBFS seems to * be not clearly documented. It would be just OK to update * it as long as the endpoint is stalled (BDT entry is * actually not in use). We write 0 at first and then write * value with OWN, to avoid possible failure. */ BD_table[4*n+ep[n].rx_odd].ctrl = 0; BD_table[4*n+ep[n].rx_odd].ctrl = (config & ~(1 << 6)); } } else { config = BD_table[4*n+2+ep[n].tx_odd].ctrl; BD_table[4*n+2+!ep[n].tx_odd].ctrl &= ~(1 << 6); if ((config & 0x0080)) /* OWN already? */ { BD_table[4*n+2+ep[n].tx_odd].ctrl = 0; BD_table[4*n+2+ep[n].tx_odd].ctrl = (config & ~(1 << 6)); } } kl27z_ep_clear_stall (n); } #define USB_MAX_PACKET_SIZE 64 /* For FS device */ enum STANDARD_REQUESTS { GET_STATUS = 0, CLEAR_FEATURE, RESERVED1, SET_FEATURE, RESERVED2, SET_ADDRESS, GET_DESCRIPTOR, SET_DESCRIPTOR, GET_CONFIGURATION, SET_CONFIGURATION, GET_INTERFACE, SET_INTERFACE, SYNCH_FRAME, TOTAL_REQUEST /* Total number of Standard request */ }; enum FEATURE_SELECTOR { ENDPOINT_STALL, DEVICE_REMOTE_WAKEUP }; struct data_ctl { uint8_t *addr; uint16_t len; uint8_t require_zlp; }; /* The state machine states of a control pipe */ enum { WAIT_SETUP, IN_DATA, OUT_DATA, LAST_IN_DATA, WAIT_STATUS_IN, WAIT_STATUS_OUT, STALLED, PAUSE }; struct device_ctl { /* control pipe state */ uint8_t state; uint32_t tkdone; uint32_t reset; uint32_t error; uint32_t stall; uint32_t send; uint32_t recv; /* Device specific settings */ uint8_t configuration; uint8_t feature; }; static struct device_ctl device_ctl; static struct data_ctl data_ctl; static struct device_ctl *const dev_p = &device_ctl; static struct data_ctl *const data_p = &data_ctl; static void handle_transaction (uint8_t stat); void usb_lld_stall (int n) { kl27z_ep_stall (n); } void usb_lld_init (uint8_t feature) { dev_p->state = WAIT_SETUP; dev_p->tkdone = 0; dev_p->reset = 0; dev_p->error = 0; dev_p->stall = 0; usb_lld_set_configuration (0); dev_p->feature = feature; kl27z_set_daddr (0); kl27z_usb_init (); /* Enable the endpoint 0. */ USB_ENDPT[0].EP = 0x0d; /* Clear Interrupt Status Register, and enable interrupt for USB */ USB_CTRL1->ISTAT = 0xff; /* All clear */ USB_CTRL1->INTEN = USB_IS_STALL | USB_IS_TOKDNE | USB_IS_ERROR | USB_IS_USBRST; } void usb_interrupt_handler (void) { uint8_t istat_value = USB_CTRL1->ISTAT; uint8_t stat = USB_CTRL1->STAT; if ((istat_value & USB_IS_USBRST)) { USB_CTRL1->ISTAT = USB_IS_USBRST; usb_cb_device_reset (); dev_p->reset++; } else if ((istat_value & USB_IS_ERROR)) { /* Clear Errors. */ USB_CTRL1->ERRSTAT = USB_CTRL1->ERRSTAT; USB_CTRL1->ISTAT = USB_IS_ERROR; /*reset???*/ dev_p->error++; } else if ((istat_value & USB_IS_TOKDNE)) { handle_transaction (stat); dev_p->tkdone++; } else if ((istat_value & USB_IS_STALL)) { /* ??? stat includes ep_num in this case ???: No, it doesn't */ if (kl27z_ep_is_stall (0)) { /* It's endpoint 0, recover from erorr. */ dev_p->state = WAIT_SETUP; kl27z_ep_clear_stall (0); kl27z_prepare_ep0_setup (); } USB_CTRL1->ISTAT = USB_IS_STALL; dev_p->stall++; } } #define DATA0 0 #define DATA1 1 static void handle_datastage_out (uint8_t stat) { int odd = (stat >> 2)&1; int data01 = !((BD_table[odd].ctrl >> 6)&1); uint32_t len = (BD_table[odd].ctrl >> 16)&0x3ff; data_p->len -= len; data_p->addr += len; len = data_p->len; if (len > USB_MAX_PACKET_SIZE) len = USB_MAX_PACKET_SIZE; if (data_p->len == 0) { /* No more data to receive, proceed to send acknowledge for IN. */ dev_p->state = WAIT_STATUS_IN; kl27z_prepare_ep0_in (setup, 0, DATA1); } else { dev_p->state = OUT_DATA; kl27z_prepare_ep0_out (data_p->addr, len, data01); } } static void handle_datastage_in (uint8_t stat) { int odd = (stat >> 2)&1; int data01 = !((BD_table[2+odd].ctrl >> 6)&1); uint32_t len = USB_MAX_PACKET_SIZE; if ((data_p->len == 0) && (dev_p->state == LAST_IN_DATA)) { if (data_p->require_zlp) { data_p->require_zlp = 0; /* No more data to send. Send empty packet */ kl27z_prepare_ep0_in (setup, 0, data01); } else { /* No more data to send, proceed to receive OUT acknowledge. */ dev_p->state = WAIT_STATUS_OUT; kl27z_prepare_ep0_out (setup, 8, DATA1); } return; } dev_p->state = (data_p->len <= len) ? LAST_IN_DATA : IN_DATA; if (len > data_p->len) len = data_p->len; kl27z_prepare_ep0_in (data_p->addr, len, data01); data_p->len -= len; data_p->addr += len; } typedef int (*HANDLER) (uint8_t req, struct req_args *arg); static int std_none (uint8_t req, struct req_args *arg) { (void)req; (void)arg; return USB_UNSUPPORT; } static int std_get_status (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; uint16_t status_info = 0; if (arg->value != 0 || arg->len != 2 || (arg->index >> 8) != 0 || USB_SETUP_SET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT) { if (arg->index == 0) { /* Get Device Status */ uint8_t feature = dev_p->feature; /* Remote Wakeup enabled */ if ((feature & (1 << 5))) status_info |= 2; else status_info &= ~2; /* Bus-powered */ if ((feature & (1 << 6))) status_info |= 1; else /* Self-powered */ status_info &= ~1; return usb_lld_reply_request (&status_info, 2, arg); } } else if (rcp == INTERFACE_RECIPIENT) { int r; if (dev_p->configuration == 0) return USB_UNSUPPORT; r = usb_cb_interface (USB_QUERY_INTERFACE, arg); if (r != USB_SUCCESS) return USB_UNSUPPORT; return usb_lld_reply_request (&status_info, 2, arg); } else if (rcp == ENDPOINT_RECIPIENT) { uint8_t n = (arg->index & 0x0f); if ((arg->index & 0x70) || n == ENDP0) return USB_UNSUPPORT; if (kl27z_ep_is_disabled (n)) return USB_UNSUPPORT; status_info = kl27z_ep_is_stall (n); return usb_lld_reply_request (&status_info, 2, arg); } return USB_UNSUPPORT; } static int std_clear_feature (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_GET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT) { if (arg->len != 0 || arg->index != 0) return USB_UNSUPPORT; if (arg->value == DEVICE_REMOTE_WAKEUP) { dev_p->feature &= ~(1 << 5); return USB_SUCCESS; } } else if (rcp == ENDPOINT_RECIPIENT) { uint8_t n = (arg->index & 0x0f); if (dev_p->configuration == 0) return USB_UNSUPPORT; if (arg->len != 0 || (arg->index >> 8) != 0 || arg->value != ENDPOINT_STALL || n == ENDP0) return USB_UNSUPPORT; if (kl27z_ep_is_disabled (n)) return USB_UNSUPPORT; kl27z_ep_clear_dtog ((arg->index & 0x80) == 0, n); // event?? return USB_SUCCESS; } return USB_UNSUPPORT; } static int std_set_feature (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_GET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT) { if (arg->len != 0 || arg->index != 0) return USB_UNSUPPORT; if (arg->value == DEVICE_REMOTE_WAKEUP) { dev_p->feature |= 1 << 5; // event?? return USB_SUCCESS; } } else if (rcp == ENDPOINT_RECIPIENT) { uint8_t n = (arg->index & 0x0f); if (dev_p->configuration == 0) return USB_UNSUPPORT; if (arg->len != 0 || (arg->index >> 8) != 0 || arg->value != 0 || n == ENDP0) return USB_UNSUPPORT; if (kl27z_ep_is_disabled (n)) return USB_UNSUPPORT; kl27z_ep_stall (n); // event?? return USB_SUCCESS; } return USB_UNSUPPORT; } static int std_set_address (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_GET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT && arg->len == 0 && arg->value <= 127 && arg->index == 0 && dev_p->configuration == 0) return USB_SUCCESS; return USB_UNSUPPORT; } static int std_get_descriptor (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_SET (req)) return USB_UNSUPPORT; return usb_cb_get_descriptor (rcp, (arg->value >> 8), (arg->value & 0xff), arg); } static int std_get_configuration (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; (void)arg; if (USB_SETUP_SET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT) return usb_lld_reply_request (&dev_p->configuration, 1, arg); return USB_UNSUPPORT; } static int std_set_configuration (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_GET (req)) return USB_UNSUPPORT; if (rcp == DEVICE_RECIPIENT && arg->index == 0 && arg->len == 0) return usb_cb_handle_event (USB_EVENT_CONFIG, arg->value); return USB_UNSUPPORT; } static int std_get_interface (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_SET (req)) return USB_UNSUPPORT; if (rcp == INTERFACE_RECIPIENT) { if (arg->value != 0 || (arg->index >> 8) != 0 || arg->len != 1) return USB_UNSUPPORT; if (dev_p->configuration == 0) return USB_UNSUPPORT; return usb_cb_interface (USB_GET_INTERFACE, arg); } return USB_UNSUPPORT; } static int std_set_interface (uint8_t req, struct req_args *arg) { uint8_t rcp = req & RECIPIENT; if (USB_SETUP_GET (req) || rcp != INTERFACE_RECIPIENT || arg->len != 0 || (arg->index >> 8) != 0 || (arg->value >> 8) != 0 || dev_p->configuration == 0) return USB_UNSUPPORT; return usb_cb_interface (USB_SET_INTERFACE, arg); } static void handle_setup0 (void) { struct req_args *arg = (struct req_args *)&setup[2]; int r = USB_UNSUPPORT; HANDLER handler; data_p->addr = NULL; data_p->len = 0; data_p->require_zlp = 0; if ((setup[0] & REQUEST_TYPE) == STANDARD_REQUEST) { if (setup[1] < TOTAL_REQUEST) { switch (setup[1]) { case 0: handler = std_get_status; break; case 1: handler = std_clear_feature; break; case 3: handler = std_set_feature; break; case 5: handler = std_set_address; break; case 6: handler = std_get_descriptor; break; case 8: handler = std_get_configuration; break; case 9: handler = std_set_configuration; break; case 10: handler = std_get_interface; break; case 11: handler = std_set_interface; break; default: handler = std_none; break; } r = (*handler) (setup[0], arg); } } else r = usb_cb_setup (setup[0], setup[1], arg); if (r != USB_SUCCESS) dev_p->state = STALLED; else if (USB_SETUP_SET (setup[0])) { if (arg->len == 0) { /* Zero length packet for ACK. */ kl27z_prepare_ep0_in (setup, 0, DATA1); dev_p->state = WAIT_STATUS_IN; } } } static void handle_in0 (uint8_t stat) { if (dev_p->state == IN_DATA || dev_p->state == LAST_IN_DATA) handle_datastage_in (stat); else if (dev_p->state == WAIT_STATUS_IN) { /* Control WRITE transfer done successfully. */ uint16_t value = (setup[3]<<8) | setup[2]; if ((setup[1] == SET_ADDRESS) && ((setup[0] & (REQUEST_TYPE | RECIPIENT)) == (STANDARD_REQUEST | DEVICE_RECIPIENT))) { kl27z_set_daddr (value); usb_cb_handle_event (USB_EVENT_ADDRESS, value); ep[0].rx_odd = 0; } else usb_cb_ctrl_write_finish (setup[0], setup[1], (struct req_args *)&setup[2]); dev_p->state = WAIT_SETUP; kl27z_prepare_ep0_setup (); } else dev_p->state = STALLED; } static void handle_out0 (uint8_t stat) { if (dev_p->state == IN_DATA || dev_p->state == LAST_IN_DATA) /* Host aborts the control READ transfer before finish. */ dev_p->state = STALLED; else if (dev_p->state == OUT_DATA) /* It's normal control WRITE transfer. */ handle_datastage_out (stat); else if (dev_p->state == WAIT_STATUS_OUT) { /* Control READ transfer done successfully. */ dev_p->state = WAIT_SETUP; kl27z_prepare_ep0_setup (); } else dev_p->state = STALLED; } static void handle_transaction (uint8_t stat) { int odd = (stat >> 2)&1; uint8_t ep_num = (stat >> 4); if (ep_num == 0) { if ((stat & 0x08) == 0) { ep[0].rx_odd ^= 1; if (TOK_PID (BD_table[odd].ctrl) == 0x0d) { handle_setup0 (); USB_CTRL1->ISTAT = USB_IS_TOKDNE; USB_CTRL1->CTL = 0x01; /* Clear TXSUSPENDTOKENBUSY. */ } else { USB_CTRL1->ISTAT = USB_IS_TOKDNE; handle_out0 (stat); } } else { ep[0].tx_odd ^= 1; USB_CTRL1->ISTAT = USB_IS_TOKDNE; handle_in0 (stat); } if (dev_p->state == STALLED) kl27z_ep_stall (0); } else { if ((stat & 0x08) == 0) { dev_p->recv++; ep[ep_num].rx_odd ^= 1; usb_cb_rx_ready (ep_num); } else { /* XXX: Can be NAK. Check BDT if it's NAK or not. */ dev_p->send++; ep[ep_num].tx_odd ^= 1; usb_cb_tx_done (ep_num); } USB_CTRL1->ISTAT = USB_IS_TOKDNE; } } void usb_lld_reset (uint8_t feature) { dev_p->feature = feature; usb_lld_set_configuration (0); /* Reset USB */ USB_CTRL2->USBTRC0 = 0xc0; USB_CTRL1->CTL = 0x00; /* Disable USB FS communication module */ dev_p->state = WAIT_SETUP; dev_p->tkdone = 0; dev_p->error = 0; dev_p->stall = 0; kl27z_set_daddr (0); kl27z_usb_init (); /* Clear Interrupt Status Register, and enable interrupt for USB */ USB_CTRL1->ISTAT = 0xff; /* All clear */ USB_CTRL1->INTEN = USB_IS_STALL | USB_IS_TOKDNE | USB_IS_ERROR | USB_IS_USBRST; } void usb_lld_setup_endpoint (int n, int rx_en, int tx_en) { if (n == 0) { /* Enable the endpoint 0. */ USB_ENDPT[0].EP = 0x0d; kl27z_prepare_ep0_setup (); } else { /* Enable the endpoint. */ USB_ENDPT[n].EP = (rx_en << 3)|(tx_en << 2)|0x11; /* Configure BDT entry so that it starts with DATA0. */ /* RX */ BD_table[4*n+ep[n].rx_odd].ctrl = 0x0000; BD_table[4*n+ep[n].rx_odd].buf = NULL; BD_table[4*n+!ep[n].rx_odd].ctrl = 0x0040; BD_table[4*n+!ep[n].rx_odd].buf = NULL; /* TX */ BD_table[4*n+2+ep[n].tx_odd].ctrl = 0x0000; BD_table[4*n+2+ep[n].tx_odd].buf = NULL; BD_table[4*n+2+!ep[n].tx_odd].ctrl = 0x0040; BD_table[4*n+2+!ep[n].tx_odd].buf = NULL; } } void usb_lld_set_configuration (uint8_t config) { dev_p->configuration = config; } uint8_t usb_lld_current_configuration (void) { return dev_p->configuration; } void usb_lld_set_data_to_recv (void *p, size_t len) { data_p->addr = (uint8_t *)p; data_p->len = len; if (len > USB_MAX_PACKET_SIZE) len = USB_MAX_PACKET_SIZE; kl27z_prepare_ep0_out (p, len, DATA1); dev_p->state = OUT_DATA; } /* * BUF: Pointer to data memory. Data memory should not be allocated * on stack when BUFLEN > USB_MAX_PACKET_SIZE. * * BUFLEN: size of the data. */ int usb_lld_reply_request (const void *buf, size_t buflen, struct req_args *a) { uint32_t len_asked = a->len; uint32_t len; data_p->addr = (void *)buf; data_p->len = buflen; /* Restrict the data length to be the one host asks for */ if (data_p->len > len_asked) data_p->len = len_asked; data_p->require_zlp = (data_p->len != 0 && (data_p->len % USB_MAX_PACKET_SIZE) == 0); if (data_p->len < USB_MAX_PACKET_SIZE) { len = data_p->len; dev_p->state = LAST_IN_DATA; } else { len = USB_MAX_PACKET_SIZE; dev_p->state = IN_DATA; } if (len) kl27z_prepare_ep0_in (data_p->addr, len, DATA1); data_p->len -= len; data_p->addr += len; return USB_SUCCESS; } void usb_lld_rx_enable (int n, void *buf, size_t len) { int data01 = !((BD_table[4*n+!ep[n].rx_odd].ctrl >> 6)&1); BD_table[4*n+ep[n].rx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6); BD_table[4*n+ep[n].rx_odd].buf = buf; } int usb_lld_rx_data_len (int n) { return (BD_table[4*n+!ep[n].rx_odd].ctrl >> 16)&0x3ff; } void usb_lld_tx_enable (uint8_t n, const void *buf, size_t len) { int data01 = !((BD_table[4*n+2+!ep[n].tx_odd].ctrl >> 6)&1); BD_table[4*n+2+ep[n].tx_odd].ctrl = (len << 16) | 0x0088 | (data01 << 6); BD_table[4*n+2+ep[n].tx_odd].buf = (void *)buf; } int usb_lld_tx_result (int ep_num) { (void)ep_num; return 0; /* XXX: return -1 when NAK */ }