/* * chopstx.c - Threads and only threads. * * Copyright (C) 2013, 2014, 2015, 2016 * Flying Stone Technology * Author: NIIBE Yutaka <gniibe@fsij.org> * * This file is a part of Chopstx, a thread library for embedded. * * Chopstx is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Chopstx is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * As additional permission under GNU GPL version 3 section 7, you may * distribute non-source form of the Program without the copy of the * GNU GPL normally required by section 4, provided you inform the * receipents of GNU GPL by a written offer. * */ #include <stdarg.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <chopstx.h> /* * Thread priority: higer has higher precedence. */ #if !defined(CHX_PRIO_MAIN_INIT) #define CHX_PRIO_MAIN_INIT 1 #endif #if !defined(CHX_FLAGS_MAIN) #define CHX_FLAGS_MAIN 0 #endif /* Constant for round robin scheduling. */ #if !defined(PREEMPTION_USEC) #define PREEMPTION_USEC 1000 /* 1ms */ #endif #define MAX_PRIO (255+1) /* * Exception priority: lower has higher precedence. * * Cortex-M3 * ===================================== * Prio 0x30: svc * --------------------- * Prio 0x40: thread temporarily inhibiting schedule for critical region * ... * Prio 0xb0: systick, external interrupt * Prio 0xc0: pendsv * ===================================== * * Cortex-M0 * ===================================== * Prio 0x00: thread temporarily inhibiting schedule for critical region * ... * Prio 0x40: systick, external interrupt * Prio 0x80: pendsv * Prio 0x80: svc * ===================================== */ #define CPU_EXCEPTION_PRIORITY_CLEAR 0 #if defined(__ARM_ARCH_6M__) #define CPU_EXCEPTION_PRIORITY_INHIBIT_SCHED 0x00 /* ... */ #define CPU_EXCEPTION_PRIORITY_SYSTICK CPU_EXCEPTION_PRIORITY_INTERRUPT #define CPU_EXCEPTION_PRIORITY_INTERRUPT 0x40 #define CPU_EXCEPTION_PRIORITY_PENDSV 0x80 #define CPU_EXCEPTION_PRIORITY_SVC 0x80 /* No use in this arch */ #elif defined(__ARM_ARCH_7M__) #define CPU_EXCEPTION_PRIORITY_SVC 0x30 #define CPU_EXCEPTION_PRIORITY_INHIBIT_SCHED 0x40 /* ... */ #define CPU_EXCEPTION_PRIORITY_SYSTICK CPU_EXCEPTION_PRIORITY_INTERRUPT #define CPU_EXCEPTION_PRIORITY_INTERRUPT 0xb0 #define CPU_EXCEPTION_PRIORITY_PENDSV 0xc0 #else #error "no support for this arch" #endif /* * Lower layer architecture specific functions. * * system tick and interrupt */ /* * System tick */ /* SysTick registers. */ static volatile uint32_t *const SYST_CSR = (uint32_t *const)0xE000E010; static volatile uint32_t *const SYST_RVR = (uint32_t *const)0xE000E014; static volatile uint32_t *const SYST_CVR = (uint32_t *const)0xE000E018; static void chx_systick_reset (void) { *SYST_RVR = 0; *SYST_CVR = 0; *SYST_CSR = 7; } static void chx_systick_reload (uint32_t ticks) { *SYST_RVR = ticks; *SYST_CVR = 0; /* write (any) to clear the counter to reload. */ *SYST_RVR = 0; } static uint32_t chx_systick_get (void) { return *SYST_CVR; } #ifndef MHZ #define MHZ 72 #endif static uint32_t usec_to_ticks (uint32_t usec) { return usec * MHZ; } /* * Interrupt Handling */ /* NVIC: Nested Vectored Interrupt Controller. */ struct NVIC { volatile uint32_t ISER[8]; uint32_t unused1[24]; volatile uint32_t ICER[8]; uint32_t unused2[24]; volatile uint32_t ISPR[8]; uint32_t unused3[24]; volatile uint32_t ICPR[8]; uint32_t unused4[24]; volatile uint32_t IABR[8]; uint32_t unused5[56]; volatile uint32_t IPR[60]; }; static struct NVIC *const NVIC = (struct NVIC *const)0xE000E100; #define NVIC_ISER(n) (NVIC->ISER[n >> 5]) #define NVIC_ICER(n) (NVIC->ICER[n >> 5]) #define NVIC_ICPR(n) (NVIC->ICPR[n >> 5]) #define NVIC_IPR(n) (NVIC->IPR[n >> 2]) static void chx_enable_intr (uint8_t irq_num) { NVIC_ISER (irq_num) = 1 << (irq_num & 0x1f); } static void chx_clr_intr (uint8_t irq_num) { /* Clear pending interrupt. */ NVIC_ICPR (irq_num) = 1 << (irq_num & 0x1f); } static void chx_disable_intr (uint8_t irq_num) { NVIC_ICER (irq_num) = 1 << (irq_num & 0x1f); } static void chx_set_intr_prio (uint8_t n) { unsigned int sh = (n & 3) << 3; NVIC_IPR (n) = (NVIC_IPR(n) & ~(0xFF << sh)) | (CPU_EXCEPTION_PRIORITY_INTERRUPT << sh); } static volatile uint32_t *const ICSR = (uint32_t *const)0xE000ED04; /* Priority control. */ static uint32_t *const AIRCR = (uint32_t *const)0xE000ED0C; static uint32_t *const SHPR2 = (uint32_t *const)0xE000ED1C; static uint32_t *const SHPR3 = (uint32_t *const)0xE000ED20; static void chx_prio_init (void) { *AIRCR = 0x05FA0000 | ( 5 << 8); /* PRIGROUP = 5, 2-bit:2-bit. */ *SHPR2 = (CPU_EXCEPTION_PRIORITY_SVC << 24); *SHPR3 = ((CPU_EXCEPTION_PRIORITY_SYSTICK << 24) | (CPU_EXCEPTION_PRIORITY_PENDSV << 16)); } /** * chx_fatal - Fatal error point. * @err_code: Error code * * When it detects a coding error, this function will be called to * stop further execution of code. It never returns. */ void chx_fatal (uint32_t err_code) { (void)err_code; for (;;); } /* RUNNING: the current thread. */ struct chx_thread *running; struct chx_queue { struct chx_qh q; struct chx_spinlock lock; }; /* READY: priority queue. */ static struct chx_queue q_ready; /* Queue of threads waiting for timer. */ static struct chx_queue q_timer; /* Queue of threads which wait for the exit of some thread. */ static struct chx_queue q_join; /* Forward declaration(s). */ static void chx_request_preemption (uint16_t prio); static int chx_wakeup (struct chx_pq *p); /**************/ static void chx_spin_init (struct chx_spinlock *lk) { (void)lk; } static void chx_spin_lock (struct chx_spinlock *lk) { (void)lk; } static void chx_spin_unlock (struct chx_spinlock *lk) { (void)lk; } /* The thread context: specific to ARM Cortex-M3 now. */ struct tcontext { uint32_t reg[9]; /* r4, r5, r6, r7, r8, r9, r10, r11, r13(sp) */ }; /* Saved registers on the stack. */ struct chx_stack_regs { uint32_t reg[8]; /* r0, r1, r2, r3, r12, lr, pc, xpsr */ }; /* * Constants for ARM. */ #define REG_EXIT 4 /* R8 */ #define REG_SP 8 #define REG_R0 0 #define REG_LR 5 #define REG_PC 6 #define REG_XPSR 7 #define INITIAL_XPSR 0x01000000 /* T=1 */ /**************/ struct chx_pq { struct chx_pq *next, *prev; uint32_t : 4; uint32_t : 5; uint32_t : 6; uint32_t flag_is_proxy : 1; uint32_t : 8; uint32_t prio : 8; struct chx_qh *parent; uint32_t v; }; struct chx_px { /* inherits PQ */ struct chx_pq *next, *prev; uint32_t : 4; uint32_t : 5; uint32_t : 6; uint32_t flag_is_proxy : 1; uint32_t : 8; uint32_t prio : 8; struct chx_qh *parent; uint32_t v; struct chx_thread *master; uint32_t *counter_p; uint16_t *ready_p; struct chx_spinlock lock; /* spinlock to update the COUNTER */ }; struct chx_thread { /* inherits PQ */ struct chx_pq *next, *prev; uint32_t state : 4; uint32_t flag_detached : 1; uint32_t flag_got_cancel : 1; uint32_t flag_join_req : 1; uint32_t flag_sched_rr : 1; uint32_t flag_cancelable : 1; uint32_t : 6; uint32_t flag_is_proxy : 1; uint32_t prio_orig : 8; uint32_t prio : 8; struct chx_qh *parent; uint32_t v; struct tcontext tc; struct chx_mtx *mutex_list; struct chx_cleanup *clp; }; struct chx_poll_head { uint16_t type; uint16_t ready; }; static void chx_cpu_sched_lock (void) { if (running->prio < CHOPSTX_PRIO_INHIBIT_PREEMPTION) { #if defined(__ARM_ARCH_6M__) asm volatile ("cpsid i" : : : "memory"); #else register uint32_t tmp = CPU_EXCEPTION_PRIORITY_INHIBIT_SCHED; asm volatile ("msr BASEPRI, %0" : : "r" (tmp) : "memory"); #endif } } static void chx_cpu_sched_unlock (void) { if (running->prio < CHOPSTX_PRIO_INHIBIT_PREEMPTION) { #if defined(__ARM_ARCH_6M__) asm volatile ("cpsie i" : : : "memory"); #else register uint32_t tmp = CPU_EXCEPTION_PRIORITY_CLEAR; asm volatile ("msr BASEPRI, %0" : : "r" (tmp) : "memory"); #endif } } /* * Double linked list handling. */ static int ll_empty (struct chx_qh *q) { return q == (struct chx_qh *)q->next; } static struct chx_pq * ll_dequeue (struct chx_pq *pq) { pq->next->prev = pq->prev; pq->prev->next = pq->next; pq->prev = pq->next = pq; return pq; } static void ll_insert (struct chx_pq *pq0, struct chx_qh *q) { struct chx_pq *pq = (struct chx_pq *)q; pq0->next = (struct chx_pq *)pq; pq0->prev = pq->prev; pq->prev->next = (struct chx_pq *)pq0; pq->prev = pq0; } static struct chx_pq * ll_pop (struct chx_qh *q) { if (q == (struct chx_qh *)q->next) return NULL; return ll_dequeue (q->next); } static void ll_prio_push (struct chx_pq *pq0, struct chx_qh *q0) { struct chx_pq *p; for (p = q0->next; p != (struct chx_pq *)q0; p = p->next) if (p->prio <= pq0->prio) break; pq0->parent = q0; ll_insert (pq0, (struct chx_qh *)p); } static void ll_prio_enqueue (struct chx_pq *pq0, struct chx_qh *q0) { struct chx_pq *p; for (p = q0->next; p != (struct chx_pq *)q0; p = p->next) if (p->prio < pq0->prio) break; pq0->parent = q0; ll_insert (pq0, (struct chx_qh *)p); } /* * Thread status. */ enum { THREAD_RUNNING=0, THREAD_READY, THREAD_WAIT_MTX, THREAD_WAIT_CND, THREAD_WAIT_TIME, THREAD_WAIT_POLL, THREAD_JOIN, /**/ THREAD_EXITED=0x0E, THREAD_FINISHED=0x0F }; static struct chx_thread * chx_ready_pop (void) { struct chx_thread *tp; chx_spin_lock (&q_ready.lock); tp = (struct chx_thread *)ll_pop (&q_ready.q); if (tp) tp->state = THREAD_RUNNING; chx_spin_unlock (&q_ready.lock); return tp; } static void chx_ready_push (struct chx_thread *tp) { chx_spin_lock (&q_ready.lock); tp->state = THREAD_READY; ll_prio_push ((struct chx_pq *)tp, &q_ready.q); chx_spin_unlock (&q_ready.lock); } static void chx_ready_enqueue (struct chx_thread *tp) { chx_spin_lock (&q_ready.lock); tp->state = THREAD_READY; ll_prio_enqueue ((struct chx_pq *)tp, &q_ready.q); chx_spin_unlock (&q_ready.lock); } static void __attribute__((naked, used)) idle (void) { #if defined(USE_WFI_FOR_IDLE) for (;;) asm volatile ("wfi" : : : "memory"); #else for (;;); #endif } static void chx_set_timer (struct chx_thread *tp, uint32_t ticks) { if (tp == (struct chx_thread *)&q_timer.q) chx_systick_reload (ticks); else tp->v = ticks; } static struct chx_thread * chx_timer_insert (struct chx_thread *tp, uint32_t usec) { struct chx_pq *p; uint32_t ticks = usec_to_ticks (usec); uint32_t next_ticks = chx_systick_get (); for (p = q_timer.q.next; p != (struct chx_pq *)&q_timer.q; p = p->next) { if (ticks < next_ticks) { tp->parent = &q_timer.q; ll_insert ((struct chx_pq *)tp, (struct chx_qh *)p); chx_set_timer ((struct chx_thread *)tp->prev, ticks); chx_set_timer (tp, (next_ticks - ticks)); break; } else { ticks -= next_ticks; next_ticks = p->v; } } if (p == (struct chx_pq *)&q_timer.q) { tp->parent = &q_timer.q; ll_insert ((struct chx_pq *)tp, (struct chx_qh *)p); chx_set_timer ((struct chx_thread *)tp->prev, ticks); chx_set_timer (tp, 1); /* Non-zero for the last entry. */ } return tp; } static void chx_timer_dequeue (struct chx_thread *tp) { struct chx_thread *tp_prev; chx_spin_lock (&q_timer.lock); tp_prev = (struct chx_thread *)tp->prev; if (tp_prev == (struct chx_thread *)&q_timer.q) { if (tp->next == (struct chx_pq *)&q_timer.q) chx_set_timer (tp_prev, 0); /* Cancel timer*/ else { /* Update timer. */ uint32_t next_ticks = chx_systick_get () + tp->v; chx_set_timer (tp_prev, next_ticks); } } else tp_prev->v += tp->v; ll_dequeue ((struct chx_pq *)tp); tp->v = 0; chx_spin_unlock (&q_timer.lock); } void chx_timer_expired (void) { struct chx_thread *tp; uint16_t prio = 0; /* Use uint16_t here. */ chx_spin_lock (&q_timer.lock); if ((tp = (struct chx_thread *)ll_pop (&q_timer.q))) { uint32_t next_tick = tp->v; chx_ready_enqueue (tp); if (tp == running) /* tp->flag_sched_rr == 1 */ prio = MAX_PRIO; else if ((uint16_t)tp->prio > prio) prio = (uint16_t)tp->prio; if (!ll_empty (&q_timer.q)) { struct chx_thread *tp_next; for (tp = (struct chx_thread *)q_timer.q.next; tp != (struct chx_thread *)&q_timer.q && next_tick == 0; tp = tp_next) { next_tick = tp->v; tp_next = (struct chx_thread *)tp->next; ll_dequeue ((struct chx_pq *)tp); chx_ready_enqueue (tp); if (tp == running) prio = MAX_PRIO; else if ((uint16_t)tp->prio > prio) prio = (uint16_t)tp->prio; } if (!ll_empty (&q_timer.q)) chx_set_timer ((struct chx_thread *)&q_timer.q, next_tick); } } chx_request_preemption (prio); chx_spin_unlock (&q_timer.lock); } /* Queue of threads which wait for some interrupts. */ static struct chx_queue q_intr; void chx_handle_intr (void) { struct chx_pq *p; register uint32_t irq_num; asm volatile ("mrs %0, IPSR\n\t" "sub %0, #16" /* Exception # - 16 = interrupt number. */ : "=r" (irq_num) : /* no input */ : "memory"); chx_disable_intr (irq_num); chx_spin_lock (&q_intr.lock); for (p = q_intr.q.next; p != (struct chx_pq *)&q_intr.q; p = p->next) if (p->v == irq_num) { /* should be one at most. */ struct chx_px *px = (struct chx_px *)p; ll_dequeue (p); chx_wakeup (p); chx_request_preemption (px->master->prio); break; } chx_spin_unlock (&q_intr.lock); } void chx_systick_init (void) { chx_systick_reset (); if ((CHX_FLAGS_MAIN & CHOPSTX_SCHED_RR)) { chx_cpu_sched_lock (); chx_spin_lock (&q_timer.lock); chx_timer_insert (running, PREEMPTION_USEC); chx_spin_unlock (&q_timer.lock); chx_cpu_sched_unlock (); } } chopstx_t chopstx_main; void chx_init (struct chx_thread *tp) { chx_prio_init (); memset (&tp->tc, 0, sizeof (tp->tc)); q_ready.q.next = q_ready.q.prev = (struct chx_pq *)&q_ready.q; chx_spin_init (&q_ready.lock); q_timer.q.next = q_timer.q.prev = (struct chx_pq *)&q_timer.q; chx_spin_init (&q_timer.lock); q_join.q.next = q_join.q.prev = (struct chx_pq *)&q_join.q; chx_spin_init (&q_join.lock); q_intr.q.next = q_intr.q.prev = (struct chx_pq *)&q_intr.q; chx_spin_init (&q_intr.lock); tp->next = tp->prev = (struct chx_pq *)tp; tp->mutex_list = NULL; tp->clp = NULL; tp->state = THREAD_RUNNING; tp->flag_got_cancel = tp->flag_join_req = 0; tp->flag_cancelable = 1; tp->flag_sched_rr = (CHX_FLAGS_MAIN & CHOPSTX_SCHED_RR)? 1 : 0; tp->flag_detached = (CHX_FLAGS_MAIN & CHOPSTX_DETACHED)? 1 : 0; tp->flag_is_proxy = 0; tp->prio_orig = CHX_PRIO_MAIN_INIT; tp->prio = 0; tp->parent = NULL; tp->v = 0; running = tp; if (CHX_PRIO_MAIN_INIT >= CHOPSTX_PRIO_INHIBIT_PREEMPTION) chx_cpu_sched_lock (); tp->prio = CHX_PRIO_MAIN_INIT; chopstx_main = (chopstx_t)tp; } static void chx_request_preemption (uint16_t prio) { if (running == NULL || (uint16_t)running->prio < prio) { *ICSR = (1 << 28); asm volatile ("" : : : "memory"); } } #define CHX_SLEEP 0 #define CHX_YIELD 1 /* * chx_sched: switch to another thread. * * There are two cases: * YIELD=0 (SLEEP): Current RUNNING thread is already connected to * something (mutex, cond, intr, etc.) * YIELD=1 (YIELD): Current RUNNING thread is active, * it is needed to be enqueued to READY queue. * * For Cortex-M0, this should be AAPCS-compliant function entry, so we * put "noinline" attribute. * * AAPCS: ARM Architecture Procedure Call Standard * * Returns: * 1 on erroneous wakeup. * 0 on normal wakeup. * -1 on cancellation. */ static int __attribute__ ((naked, noinline)) chx_sched (uint32_t yield) { register struct chx_thread *tp asm ("r0"); #if defined(__ARM_ARCH_7M__) asm volatile ( "svc #0\n\t" "bx lr" : "=r" (tp) : "0" (yield): "memory"); #else register uint32_t arg_yield asm ("r1"); /* Build stack data as if it were an exception entry. */ /* * r0: 0 scratch * r1: 0 scratch * r2: 0 scratch * r3: 0 scratch * r12: 0 scratch * lr as-is * pc: return address (= lr) * psr: INITIAL_XPSR scratch */ asm ("mov r1, lr\n\t" "mov r2, r1\n\t" "mov r3, #128\n\t" "lsl r3, #17\n\t" "push {r1, r2, r3}\n\t" "mov r1, #0\n\t" "mov r2, r1\n\t" "mov r3, r1\n\t" "push {r1, r2, r3}\n\t" "push {r1, r2}" : /* no output*/ : /* no input */ : "r1", "r2", "r3", "memory"); /* Save registers onto CHX_THREAD struct. */ asm ("mov r1, r0\n\t" "ldr r2, =running\n\t" "ldr r0, [r2]\n\t" "add r0, #20\n\t" "stm r0!, {r4, r5, r6, r7}\n\t" "mov r2, r8\n\t" "mov r3, r9\n\t" "mov r4, r10\n\t" "mov r5, r11\n\t" "mov r6, sp\n\t" "stm r0!, {r2, r3, r4, r5, r6}\n\t" "sub r0, #56" : "=r" (tp), "=r" (arg_yield) : "0" (yield) : "r2", "r3", "r4", "r5", "r6", "r7", "memory"); if (arg_yield) { if (tp->flag_sched_rr) chx_timer_dequeue (tp); chx_ready_enqueue (tp); } tp = chx_ready_pop (); if (tp && tp->flag_sched_rr) { chx_spin_lock (&q_timer.lock); tp = chx_timer_insert (tp, PREEMPTION_USEC); chx_spin_unlock (&q_timer.lock); } asm volatile (/* Now, r0 points to the thread to be switched. */ /* Put it to *running. */ "ldr r1, =running\n\t" /* Update running. */ "str r0, [r1]\n\t" "cmp r0, #0\n\t" "bne 0f\n\t" /* Spawn an IDLE thread. */ "ldr r1, =__main_stack_end__\n\t" "mov sp, r1\n\t" "ldr r0, =idle\n\t" /* PC = idle */ /**/ /* Unmask interrupts. */ "cpsie i\n\t" "bx r0\n" /* Normal context switch */ "0:\n\t" /**/ "add r0, #20\n\t" "ldm r0!, {r4, r5, r6, r7}\n\t" "ldm r0!, {r1, r2, r3}\n\t" "mov r8, r1\n\t" "mov r9, r2\n\t" "mov r10, r3\n\t" "ldm r0!, {r1, r2}\n\t" "mov r11, r1\n\t" "mov sp, r2\n\t" "sub r0, #45\n\t" "ldrb r1, [r0]\n\t" /* ->PRIO field. */ "cmp r1, #247\n\t" "bhi 1f\n\t" /* Leave interrupt disabled if >= 248 */ /**/ /* Unmask interrupts. */ "cpsie i\n" /**/ "1:\n\t" /* 0: r0 4: r1 8: r2 12: r3 16: r12 20: lr 24: pc 28: psr 32: possibly exists for alignment [28 or 32] <-- pc */ "ldr r0, [sp, #28]\n\t" "lsl r1, r0, #23\n\t" "bcc 2f\n\t" /**/ "msr APSR_nzcvq, r0\n\t" "ldr r0, [sp, #24]\n\t" "mov r1, #1\n\t" "orr r0, r1\n\t" /* Ensure Thumb-mode */ "str r0, [sp, #32]\n\t" /**/ "ldr r0, [sp, #20]\n\t" "mov lr, r0\n\t" "ldr r0, [sp, #16]\n\t" "mov r12, r0\n\t" "pop {r0, r1, r2, r3}\n\t" "add sp, #16\n\t" "pop {pc}\n" "2:\n\t" "msr APSR_nzcvq, r0\n\t" "ldr r0, [sp, #24]\n\t" "mov r1, #1\n\t" "orr r0, r1\n\t" /* Ensure Thumb-mode */ "str r0, [sp, #28]\n\t" /**/ "ldr r0, [sp, #20]\n\t" "mov lr, r0\n\t" "ldr r0, [sp, #16]\n\t" "mov r12, r0\n\t" "pop {r0, r1, r2, r3}\n\t" "add sp, #12\n\t" "pop {pc}" : "=r" (tp) /* Return value in R0 */ : "0" (tp) : "memory"); #endif return (uint32_t)tp; } /* * Wakeup the thread TP. Called with schedule lock held. */ static int chx_wakeup (struct chx_pq *pq) { int yield = 0; struct chx_thread *tp; if (pq->flag_is_proxy) { struct chx_px *px = (struct chx_px *)pq; chx_spin_lock (&px->lock); (*px->counter_p)++; *px->ready_p = 1; tp = px->master; if (tp->state == THREAD_WAIT_POLL) { ((struct chx_stack_regs *)tp->tc.reg[REG_SP])->reg[REG_R0] = 1; if (tp->parent == &q_timer.q) chx_timer_dequeue (tp); chx_ready_enqueue (tp); if (tp->prio > running->prio) yield = 1; } chx_spin_unlock (&px->lock); } else { ((struct chx_stack_regs *)tp->tc.reg[REG_SP])->reg[REG_R0] = 1; tp = (struct chx_thread *)pq; chx_ready_enqueue (tp); if (tp->prio > running->prio) yield = 1; } return yield; } /* The RETVAL is saved into register R8. */ static void __attribute__((noreturn)) chx_exit (void *retval) { register uint32_t r8 asm ("r8"); struct chx_pq *p; asm volatile ("mov %0, %1" : "=r" (r8) : "r" (retval)); chx_cpu_sched_lock (); if (running->flag_join_req) { /* wake up a thread which requests to join */ chx_spin_lock (&q_join.lock); for (p = q_join.q.next; p != (struct chx_pq *)&q_join.q; p = p->next) if (p->v == (uint32_t)running) { /* should be one at most. */ ll_dequeue (p); chx_wakeup (p); break; } chx_spin_unlock (&q_join.lock); } if (running->flag_sched_rr) chx_timer_dequeue (running); if (running->flag_detached) running->state = THREAD_FINISHED; else running->state = THREAD_EXITED; asm volatile ("" : : "r" (r8) : "memory"); chx_sched (CHX_SLEEP); /* never comes here. */ for (;;); } /* * Lower layer mutex unlocking. Called with schedule lock held. */ static chopstx_prio_t chx_mutex_unlock (chopstx_mutex_t *mutex) { struct chx_thread *tp; chopstx_prio_t prio = 0; mutex->owner = NULL; running->mutex_list = mutex->list; mutex->list = NULL; tp = (struct chx_thread *)ll_pop (&mutex->q); if (tp) { uint16_t newprio = running->prio_orig; chopstx_mutex_t *m; chx_ready_enqueue (tp); /* Examine mutexes we hold, and determine new priority for running. */ for (m = running->mutex_list; m; m = m->list) if (!ll_empty (&m->q) && ((struct chx_thread *)(m->q.next))->prio > newprio) newprio = ((struct chx_thread *)m->q.next)->prio; /* Then, assign it. */ running->prio = newprio; if (prio < tp->prio) prio = tp->prio; } return prio; } #define CHOPSTX_PRIO_MASK ((1 << CHOPSTX_PRIO_BITS) - 1) typedef void *(voidfunc) (void *); extern void cause_link_time_error_unexpected_size_of_struct_chx_thread (void); /** * chopstx_create - Create a thread * @flags_and_prio: Flags and priority * @stack_addr: Stack address * @stack_size: Size of stack * @thread_entry: Entry function of new thread * @arg: Argument to the thread entry function * * Create a thread. Returns thread ID. */ chopstx_t chopstx_create (uint32_t flags_and_prio, uint32_t stack_addr, size_t stack_size, voidfunc thread_entry, void *arg) { struct chx_thread *tp; void *stack; struct chx_stack_regs *p; chopstx_prio_t prio = (flags_and_prio & CHOPSTX_PRIO_MASK); if (CHOPSTX_THREAD_SIZE != sizeof(struct chx_thread)) cause_link_time_error_unexpected_size_of_struct_chx_thread (); if (stack_size < sizeof (struct chx_thread) + 8 * sizeof (uint32_t)) chx_fatal (CHOPSTX_ERR_THREAD_CREATE); stack = (void *)(stack_addr + stack_size - sizeof (struct chx_thread) - sizeof (struct chx_stack_regs)); memset (stack, 0, sizeof (struct chx_stack_regs)); tp = (struct chx_thread *)(stack + sizeof (struct chx_stack_regs)); p = (struct chx_stack_regs *)stack; p->reg[REG_R0] = (uint32_t)arg; p->reg[REG_LR] = (uint32_t)chopstx_exit; p->reg[REG_PC] = (uint32_t)thread_entry; p->reg[REG_XPSR] = INITIAL_XPSR; memset (&tp->tc, 0, sizeof (tp->tc)); tp->tc.reg[REG_SP] = (uint32_t)stack; tp->next = tp->prev = (struct chx_pq *)tp; tp->mutex_list = NULL; tp->clp = NULL; tp->state = THREAD_EXITED; tp->flag_got_cancel = tp->flag_join_req = 0; tp->flag_cancelable = 1; tp->flag_sched_rr = (flags_and_prio & CHOPSTX_SCHED_RR)? 1 : 0; tp->flag_detached = (flags_and_prio & CHOPSTX_DETACHED)? 1 : 0; tp->flag_is_proxy = 0; tp->prio_orig = tp->prio = prio; tp->parent = NULL; tp->v = 0; chx_cpu_sched_lock (); chx_ready_enqueue (tp); if (tp->prio > running->prio) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); return (chopstx_t)tp; } /* * Internal timer uses SYSTICK and it has rather smaller upper limit. * Thus, we can't let the thread sleep too long, but let it loops. * * The caller should make a loop with chx_snooze. */ #define MAX_USEC_FOR_TIMER (16777215/MHZ) /* SYSTICK is 24-bit. */ /* * Sleep for some event (MAX_USEC_FOR_TIMER at max). * * Returns: * -1 on cancellation of the thread. * 0 on timeout. * 1 when no sleep is needed any more, or some event occurs. */ static int chx_snooze (uint32_t state, uint32_t *usec_p) { uint32_t usec = *usec_p; uint32_t usec0; int r; if (usec == 0) { chx_cpu_sched_unlock (); return 1; } usec0 = (usec > MAX_USEC_FOR_TIMER) ? MAX_USEC_FOR_TIMER: usec; if (running->flag_sched_rr) chx_timer_dequeue (running); chx_spin_lock (&q_timer.lock); running->state = state; chx_timer_insert (running, usec0); chx_spin_unlock (&q_timer.lock); r = chx_sched (CHX_SLEEP); if (r == 0) *usec_p -= usec0; return r; } /** * chopstx_usec_wait_var - Sleep for micro seconds (specified by variable) * @var: Pointer to usec * * Sleep for micro seconds, specified by @var. * Another thread can clear @var to stop the caller going into sleep. * * This function is DEPRECATED. Please use chopstx_poll. */ void chopstx_usec_wait_var (uint32_t *var) { int r = 0; do { chopstx_testcancel (); chx_cpu_sched_lock (); r = chx_snooze (THREAD_WAIT_TIME, var); } while (r == 0); } /** * chopstx_usec_wait - Sleep for micro seconds * @usec: number of micro seconds * * Sleep for @usec. */ void chopstx_usec_wait (uint32_t usec) { chopstx_usec_wait_var (&usec); } /** * chopstx_mutex_init - Initialize the mutex * @mutex: Mutex * * Initialize @mutex. */ void chopstx_mutex_init (chopstx_mutex_t *mutex) { chx_spin_init (&mutex->lock); mutex->q.next = mutex->q.prev = (struct chx_pq *)&mutex->q; mutex->list = NULL; mutex->owner = NULL; } /* * Re-queue TP after priority change. * Returns a thread which can wake up this thread TP. */ static struct chx_thread * requeue (struct chx_thread *tp) { if (tp->state == THREAD_READY) { chx_spin_lock (&q_ready.lock); ll_prio_enqueue (ll_dequeue ((struct chx_pq *)tp), tp->parent); chx_spin_unlock (&q_ready.lock); } else if (tp->state == THREAD_WAIT_MTX) { struct chx_mtx *mutex = (struct chx_mtx *)tp->parent; chx_spin_lock (&mutex->lock); ll_prio_enqueue (ll_dequeue ((struct chx_pq *)tp), tp->parent); chx_spin_unlock (&mutex->lock); return mutex->owner; } else if (tp->state == THREAD_WAIT_CND) { struct chx_cond *cond = (struct chx_cond *)tp->parent; chx_spin_lock (&cond->lock); ll_prio_enqueue (ll_dequeue ((struct chx_pq *)tp), tp->parent); chx_spin_unlock (&cond->lock); /* We don't know who can wake up this thread. */ } else if (tp->state == THREAD_JOIN) /* Requeue is not needed as waiting for the thread is only by one. */ return (struct chx_thread *)tp->v; return NULL; } /** * chopstx_mutex_lock - Lock the mutex * @mutex: Mutex * * Lock @mutex. */ void chopstx_mutex_lock (chopstx_mutex_t *mutex) { struct chx_thread *tp = running; while (1) { chopstx_mutex_t *m = mutex; struct chx_thread *tp0; chx_cpu_sched_lock (); chx_spin_lock (&m->lock); if (m->owner == NULL) { /* The mutex is acquired. */ m->owner = tp; m->list = tp->mutex_list; tp->mutex_list = m; chx_spin_unlock (&m->lock); chx_cpu_sched_unlock (); break; } /* Priority inheritance. */ tp0 = m->owner; while (tp0 && tp0->prio < tp->prio) { tp0->prio = tp->prio; if (tp0->state == THREAD_WAIT_TIME || tp0->state == THREAD_WAIT_POLL) { ((struct chx_stack_regs *)tp0->tc.reg[REG_SP])->reg[REG_R0] = 1; if (tp0->parent == &q_timer.q) chx_timer_dequeue (tp0); chx_ready_enqueue (tp0); tp0 = NULL; } else tp0 = requeue (tp0); } if (tp->flag_sched_rr) chx_timer_dequeue (tp); ll_prio_enqueue ((struct chx_pq *)tp, &mutex->q); tp->state = THREAD_WAIT_MTX; chx_spin_unlock (&mutex->lock); chx_sched (CHX_SLEEP); } } /** * chopstx_mutex_unlock - Unlock the mutex * @mutex: Mutex * * Unlock @mutex. */ void chopstx_mutex_unlock (chopstx_mutex_t *mutex) { chopstx_prio_t prio; chx_cpu_sched_lock (); chx_spin_lock (&mutex->lock); prio = chx_mutex_unlock (mutex); chx_spin_unlock (&mutex->lock); if (prio > running->prio) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); } /** * chopstx_cond_init - Initialize the condition variable * @cond: Condition variable * * Initialize @cond. */ void chopstx_cond_init (chopstx_cond_t *cond) { chx_spin_init (&cond->lock); cond->q.next = cond->q.prev = (struct chx_pq *)&cond->q; } /** * chopstx_cond_wait - Wait on the condition variable * @cond: Condition variable * @mutex: Associated mutex * * Wait for @cond with @mutex. */ void chopstx_cond_wait (chopstx_cond_t *cond, chopstx_mutex_t *mutex) { struct chx_thread *tp = running; int r; chopstx_testcancel (); chx_cpu_sched_lock (); if (mutex) { chx_spin_lock (&mutex->lock); chx_mutex_unlock (mutex); chx_spin_unlock (&mutex->lock); } if (tp->flag_sched_rr) chx_timer_dequeue (tp); chx_spin_lock (&cond->lock); ll_prio_enqueue ((struct chx_pq *)tp, &cond->q); tp->state = THREAD_WAIT_CND; chx_spin_unlock (&cond->lock); r = chx_sched (CHX_SLEEP); if (mutex) chopstx_mutex_lock (mutex); if (r < 0) chopstx_exit (CHOPSTX_CANCELED); } /** * chopstx_cond_signal - Wake up a thread waiting on the condition variable * @cond: Condition variable * * Wake up a thread waiting on @cond. */ void chopstx_cond_signal (chopstx_cond_t *cond) { struct chx_pq *p; int yield = 0; chx_cpu_sched_lock (); chx_spin_lock (&cond->lock); p = ll_pop (&cond->q); if (p) yield = chx_wakeup (p); chx_spin_unlock (&cond->lock); if (yield) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); } /** * chopstx_cond_broadcast - Wake up all waiting on the condition variable * @cond: Condition Variable * * Wake up all threads waiting on @cond. */ void chopstx_cond_broadcast (chopstx_cond_t *cond) { struct chx_pq *p; int yield = 0; chx_cpu_sched_lock (); chx_spin_lock (&cond->lock); while ((p = ll_pop (&cond->q))) yield |= chx_wakeup (p); chx_spin_unlock (&cond->lock); if (yield) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); } static void chx_cond_hook (struct chx_px *px, struct chx_poll_head *pd) { struct chx_poll_cond *pc = (struct chx_poll_cond *)pd; chopstx_testcancel (); if (pc->mutex) chopstx_mutex_lock (pc->mutex); if ((*pc->check) (pc->arg) != 0) { chx_spin_lock (&px->lock); (*px->counter_p)++; *px->ready_p = 1; chx_spin_unlock (&px->lock); } else { /* Condition doesn't met. * Register the proxy to wait for the condition. */ chx_cpu_sched_lock (); chx_spin_lock (&pc->cond->lock); ll_prio_enqueue ((struct chx_pq *)px, &pc->cond->q); chx_spin_unlock (&pc->cond->lock); chx_cpu_sched_unlock (); } if (pc->mutex) chopstx_mutex_unlock (pc->mutex); } /** * chopstx_claim_irq - Claim interrupt request to handle by this thread * @intr: Pointer to INTR structure * @irq_num: IRQ Number (hardware specific) * * Claim interrupt @intr with @irq_num for this thread. */ void chopstx_claim_irq (chopstx_intr_t *intr, uint8_t irq_num) { intr->type = CHOPSTX_POLL_INTR; intr->ready = 0; intr->irq_num = irq_num; chx_cpu_sched_lock (); chx_spin_lock (&q_intr.lock); chx_disable_intr (irq_num); chx_set_intr_prio (irq_num); chx_spin_unlock (&q_intr.lock); chx_cpu_sched_unlock (); } static void chx_intr_hook (struct chx_px *px, struct chx_poll_head *pd) { struct chx_intr *intr = (struct chx_intr *)pd; chopstx_testcancel (); chx_cpu_sched_lock (); px->v = intr->irq_num; chx_spin_lock (&q_intr.lock); ll_prio_enqueue ((struct chx_pq *)px, &q_intr.q); chx_enable_intr (intr->irq_num); chx_spin_unlock (&q_intr.lock); chx_cpu_sched_unlock (); } /** * chopstx_intr_wait - Wait for interrupt request from hardware * @intr: Pointer to INTR structure * * Wait for the interrupt @intr to be occured. * * This function is DEPRECATED. Please use chopstx_poll. */ void chopstx_intr_wait (chopstx_intr_t *intr) { chopstx_poll (NULL, 1, intr); } /** * chopstx_cleanup_push - Register a clean-up * @clp: Pointer to clean-up structure * * Register a clean-up structure. */ void chopstx_cleanup_push (struct chx_cleanup *clp) { clp->next = running->clp; running->clp = clp; } /** * chopstx_cleanup_pop - Release a clean-up * @execute: Execute the clen-up function on release * * Unregister a clean-up structure. When @execute is non-zero, the * clean-up will be executed. */ void chopstx_cleanup_pop (int execute) { struct chx_cleanup *clp = running->clp; if (clp) { running->clp = clp->next; if (execute) clp->routine (clp->arg); } } /** * chopstx_exit - Terminate the execution of running thread * @retval: Return value (to be caught by a joining thread) * * Calling this function terminates the execution of running thread, * after calling clean up functions. If the calling thread still * holds mutexes, they will be released. This function never * returns. */ void chopstx_exit (void *retval) { struct chx_mtx *m, *m_next; struct chx_cleanup *clp = running->clp; running->clp = NULL; while (clp) { clp->routine (clp->arg); clp = clp->next; } /* Release all mutexes this thread still holds. */ for (m = running->mutex_list; m; m = m_next) { m_next = m->list; chx_cpu_sched_lock (); chx_spin_lock (&m->lock); chx_mutex_unlock (m); chx_spin_unlock (&m->lock); chx_cpu_sched_unlock (); } chx_exit (retval); } /** * chopstx_join - join with a terminated thread * @thd: Thread to wait * @ret: Pointer to void * to store return value * * Waits for the thread of @thd to terminate. * Returns 0 on success, 1 when waiting is interrupted. */ int chopstx_join (chopstx_t thd, void **ret) { struct chx_thread *tp = (struct chx_thread *)thd; int r = 0; /* * We don't offer deadlock detection. It's users' responsibility. */ chx_cpu_sched_lock (); if (tp->flag_detached) { chx_cpu_sched_unlock (); chx_fatal (CHOPSTX_ERR_JOIN); } if (tp->state != THREAD_EXITED) { struct chx_thread *tp0 = tp; if (running->flag_sched_rr) chx_timer_dequeue (running); chx_spin_lock (&q_join.lock); ll_prio_enqueue ((struct chx_pq *)running, &q_join.q); running->v = (uint32_t)tp; running->state = THREAD_JOIN; tp->flag_join_req = 1; /* Priority inheritance. */ tp0 = tp; while (tp0 && tp0->prio < running->prio) { tp0->prio = running->prio; tp0 = requeue (tp0); } chx_spin_unlock (&q_join.lock); r = chx_sched (CHX_SLEEP); } else chx_cpu_sched_unlock (); if (r < 0) chopstx_exit (CHOPSTX_CANCELED); if (r == 0) { tp->state = THREAD_FINISHED; if (ret) *ret = (void *)tp->tc.reg[REG_EXIT]; /* R8 */ } return r; } static void chx_join_hook (struct chx_px *px, struct chx_poll_head *pd) { struct chx_poll_join *pj = (struct chx_poll_join *)pd; struct chx_thread *tp = (struct chx_thread *)pj->thd; chopstx_testcancel (); chx_cpu_sched_lock (); if (tp->flag_detached) { chx_cpu_sched_unlock (); chx_fatal (CHOPSTX_ERR_JOIN); } if (tp->state == THREAD_EXITED) { chx_spin_lock (&px->lock); (*px->counter_p)++; *px->ready_p = 1; chx_spin_unlock (&px->lock); } else { /* Not yet exited. * Register the proxy to wait for TP's exit. */ px->v = (uint32_t)tp; chx_spin_lock (&q_join.lock); ll_prio_enqueue ((struct chx_pq *)px, &q_join.q); chx_spin_unlock (&q_join.lock); tp->flag_join_req = 1; } chx_cpu_sched_unlock (); } /** * chopstx_wakeup_usec_wait - wakeup the sleeping thread for timer * @thd: Thread to be awakened * * Canceling the timer, wake up the sleeping thread. * No return value. * * This function is DEPRECATED. Please use chopstx_cond_signal, * where sleeping process calls chopstx_poll. */ void chopstx_wakeup_usec_wait (chopstx_t thd) { struct chx_thread *tp = (struct chx_thread *)thd; int yield = 0; chx_cpu_sched_lock (); if (tp->state == THREAD_WAIT_TIME) { ((struct chx_stack_regs *)tp->tc.reg[REG_SP])->reg[REG_R0] = 1; chx_timer_dequeue (tp); chx_ready_enqueue (tp); if (tp->prio > running->prio) yield = 1; } if (yield) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); } /** * chopstx_cancel - request a cancellation to a thread * @thd: Thread to be canceled * * This function requests a cancellation of a thread @thd. * No return value. */ void chopstx_cancel (chopstx_t thd) { struct chx_thread *tp = (struct chx_thread *)thd; chx_cpu_sched_lock (); tp->flag_got_cancel = 1; if (!tp->flag_cancelable) { chx_cpu_sched_unlock (); return; } /* Cancellation points: cond_wait, usec_wait, and poll. */ if (tp->state == THREAD_WAIT_CND) { struct chx_cond *cond = (struct chx_cond *)tp->parent; chx_spin_lock (&cond->lock); ll_dequeue ((struct chx_pq *)tp); chx_spin_unlock (&cond->lock); } else if (tp->state == THREAD_WAIT_TIME) chx_timer_dequeue (tp); else if (tp->state == THREAD_WAIT_POLL) { if (tp->parent == &q_timer.q) chx_timer_dequeue (tp); } else { chx_cpu_sched_unlock (); return; } ((struct chx_stack_regs *)tp->tc.reg[REG_SP])->reg[REG_R0] = -1; chx_ready_enqueue (tp); if (tp->prio > running->prio) chx_sched (CHX_YIELD); else chx_cpu_sched_unlock (); } /** * chopstx_testcancel - catch pending cancellation request * * Calling chopstx_testcancel creates a cancellation point. * No return value. If the thread is canceled, this function * does not return. */ void chopstx_testcancel (void) { if (running->flag_cancelable && running->flag_got_cancel) chopstx_exit (CHOPSTX_CANCELED); } /** * chopstx_setcancelstate - set cancelability state * @cancel_disable: 0 to enable cancelation, otherwise disabled. * * Calling chopstx_setcancelstate sets cancelability state. * * Returns old state which is 0 when it was enabled. */ int chopstx_setcancelstate (int cancel_disable) { int old_state = !running->flag_cancelable; running->flag_cancelable = (cancel_disable == 0); chopstx_testcancel (); return old_state; } static void chx_proxy_init (struct chx_px *px, uint32_t *cp) { px->next = px->prev = (struct chx_pq *)px; px->flag_is_proxy = 1; px->prio = running->prio; px->parent = NULL; px->v = 0; px->master = running; px->counter_p = cp; px->ready_p = NULL; chx_spin_init (&px->lock); } /** * chopstx_poll - wait for condition variable, thread's exit, or IRQ * @usec_p: Pointer to usec for timeout. Forever if NULL. * @n: Number of poll descriptors * @VARARGS: Pointers to an object which should be one of: * chopstx_poll_cond_t, chopstx_poll_join_t, or chopstx_intr_t. * * Returns number of active descriptors. */ int chopstx_poll (uint32_t *usec_p, int n, ...) { uint32_t counter = 0; int i; va_list ap; struct chx_px px[n]; struct chx_poll_head *pd; int r = 0; chopstx_testcancel (); for (i = 0; i < n; i++) chx_proxy_init (&px[i], &counter); va_start (ap, n); for (i = 0; i < n; i++) { pd = va_arg (ap, struct chx_poll_head *); pd->ready = 0; px[i].ready_p = &pd->ready; if (pd->type == CHOPSTX_POLL_COND) chx_cond_hook (&px[i], pd); else if (pd->type == CHOPSTX_POLL_INTR) chx_intr_hook (&px[i], pd); else chx_join_hook (&px[i], pd); } va_end (ap); chx_cpu_sched_lock (); chx_spin_lock (&px->lock); if (counter) { chx_spin_unlock (&px->lock); chx_cpu_sched_unlock (); } else if (usec_p == NULL) { if (running->flag_sched_rr) chx_timer_dequeue (running); running->state = THREAD_WAIT_POLL; chx_spin_unlock (&px->lock); r = chx_sched (CHX_SLEEP); } else { chx_spin_unlock (&px->lock); chx_cpu_sched_unlock (); do { chopstx_testcancel (); chx_cpu_sched_lock (); r = chx_snooze (THREAD_WAIT_POLL, usec_p); } while (r == 0); } va_start (ap, n); for (i = 0; i < n; i++) { pd = va_arg (ap, struct chx_poll_head *); chx_cpu_sched_lock (); chx_spin_lock (&px[i].lock); if (pd->type == CHOPSTX_POLL_COND) { struct chx_poll_cond *pc = (struct chx_poll_cond *)pd; if (pc->ready == 0) { chx_spin_lock (&pc->cond->lock); ll_dequeue ((struct chx_pq *)&px[i]); chx_spin_unlock (&pc->cond->lock); } } else if (pd->type == CHOPSTX_POLL_INTR) { struct chx_intr *intr = (struct chx_intr *)pd; if (intr->ready) chx_clr_intr (intr->irq_num); else { chx_spin_lock (&q_intr.lock); ll_dequeue ((struct chx_pq *)&px[i]); chx_spin_unlock (&q_intr.lock); chx_disable_intr (intr->irq_num); } } else { struct chx_poll_join *pj = (struct chx_poll_join *)pd; if (pj->ready == 0) { chx_spin_lock (&q_join.lock); ll_dequeue ((struct chx_pq *)&px[i]); chx_spin_unlock (&q_join.lock); } } chx_spin_unlock (&px[i].lock); chx_cpu_sched_unlock (); } va_end (ap); if (r < 0) chopstx_exit (CHOPSTX_CANCELED); return counter; } /** * chopstx_setpriority - change the schedule priority of running thread * @prio: priority * * Change the schedule priority with @prio. * * In general, it is not recommended to use this function because * dynamically changing schedule priorities complicates the system. * Only a possible valid usage of this function is in the main thread * which starts its execution with priority of CHX_PRIO_MAIN_INIT, and * let it change its priority after initialization of other threads. */ void chopstx_setpriority (chopstx_prio_t prio) { struct chx_thread *tp = running; tp->prio_orig = prio; if (prio >= CHOPSTX_PRIO_INHIBIT_PREEMPTION) chx_cpu_sched_lock (); tp->prio = prio; } /* * Lower layer architecture specific exception handling entries. * */ void __attribute__ ((naked)) preempt (void) { register struct chx_thread *tp asm ("r0"); register struct chx_thread *cur asm ("r1"); asm volatile ( #if defined(__ARM_ARCH_6M__) "cpsid i\n\t" #else "msr BASEPRI, r0\n\t" #endif "ldr r2, =running\n\t" "ldr r0, [r2]\n\t" "mov r1, r0" : "=r" (tp), "=r" (cur) : "0" (CPU_EXCEPTION_PRIORITY_INHIBIT_SCHED) : "r2"); if (!cur) /* It's idle thread. It's ok to clobber registers. */ ; else { /* Save registers onto CHX_THREAD struct. */ asm volatile ( "add %0, #20\n\t" "stm %0!, {r4, r5, r6, r7}\n\t" "mov r2, r8\n\t" "mov r3, r9\n\t" "mov r4, r10\n\t" "mov r5, r11\n\t" "mrs r6, PSP\n\t" /* r13(=SP) in user space. */ "stm %0!, {r2, r3, r4, r5, r6}" : "=r" (cur) : "0" (cur) /* * Memory clobber constraint here is not accurate, but this * works. R7 keeps its value, but having "r7" here prevents * use of R7 before this asm statement. */ : "r2", "r3", "r4", "r5", "r6", "r7", "memory"); if (tp) { if (tp->flag_sched_rr) { if (tp->state == THREAD_RUNNING) { chx_timer_dequeue (tp); chx_ready_enqueue (tp); } /* * It may be THREAD_READY after chx_timer_expired. * Then, do nothing. */ } else chx_ready_push (tp); running = NULL; } } /* Registers on stack (PSP): r0, r1, r2, r3, r12, lr, pc, xpsr */ tp = chx_ready_pop (); if (tp && tp->flag_sched_rr) { chx_spin_lock (&q_timer.lock); tp = chx_timer_insert (tp, PREEMPTION_USEC); chx_spin_unlock (&q_timer.lock); } asm volatile ( ".L_CONTEXT_SWITCH:\n\t" /* Now, r0 points to the thread to be switched. */ /* Put it to *running. */ "ldr r1, =running\n\t" /* Update running. */ "str r0, [r1]\n\t" #if defined(__ARM_ARCH_6M__) "cmp r0, #0\n\t" "beq 1f\n\t" #else "cbz r0, 1f\n\t" #endif /**/ "add r0, #20\n\t" "ldm r0!, {r4, r5, r6, r7}\n\t" #if defined(__ARM_ARCH_6M__) "ldm r0!, {r1, r2, r3}\n\t" "mov r8, r1\n\t" "mov r9, r2\n\t" "mov r10, r3\n\t" "ldm r0!, {r1, r2}\n\t" "mov r11, r1\n\t" "msr PSP, r2\n\t" #else "ldr r8, [r0], #4\n\t" "ldr r9, [r0], #4\n\t" "ldr r10, [r0], #4\n\t" "ldr r11, [r0], #4\n\t" "ldr r1, [r0], #4\n\t" "msr PSP, r1\n\t" #endif "sub r0, #45\n\t" "ldrb r1, [r0]\n\t" /* ->PRIO field. */ "mov r0, #0\n\t" "cmp r1, #247\n\t" "bhi 0f\n\t" /* Leave interrupt disabled if >= 248 */ /**/ /* Unmask interrupts. */ #if defined(__ARM_ARCH_6M__) "cpsie i\n" #else "msr BASEPRI, r0\n" #endif /**/ "0:\n\t" "sub r0, #3\n\t" /* EXC_RETURN to a thread with PSP */ "bx r0\n" "1:\n\t" /* Spawn an IDLE thread. */ "ldr r0, =__main_stack_end__-32\n\t" "msr PSP, r0\n\t" "mov r1, #0\n\t" "mov r2, #0\n\t" "mov r3, #0\n\t" "stm r0!, {r1, r2, r3}\n\t" "stm r0!, {r1, r2, r3}\n\t" "ldr r1, =idle\n\t" /* PC = idle */ "mov r2, #0x010\n\t" "lsl r2, r2, #20\n\t" /* xPSR = T-flag set (Thumb) */ "stm r0!, {r1, r2}\n\t" /**/ /* Unmask interrupts. */ "mov r0, #0\n\t" #if defined(__ARM_ARCH_6M__) "cpsie i\n\t" #else "msr BASEPRI, r0\n" #endif /**/ "sub r0, #3\n\t" /* EXC_RETURN to a thread with PSP */ "bx r0" : /* no output */ : "r" (tp) : "memory"); } #if defined(__ARM_ARCH_7M__) /* * System call: switch to another thread. * There are two cases: * ORIG_R0=0 (SLEEP): Current RUNNING thread is already connected to * something (mutex, cond, intr, etc.) * ORIG_R0=1 (YIELD): Current RUNNING thread is active, * it is needed to be enqueued to READY queue. */ void __attribute__ ((naked)) svc (void) { register struct chx_thread *tp asm ("r0"); register uint32_t orig_r0 asm ("r1"); asm ("ldr r1, =running\n\t" "ldr r0, [r1]\n\t" "add r1, r0, #20\n\t" /* Save registers onto CHX_THREAD struct. */ "stm r1!, {r4, r5, r6, r7}\n\t" "mov r2, r8\n\t" "mov r3, r9\n\t" "mov r4, r10\n\t" "mov r5, r11\n\t" "mrs r6, PSP\n\t" /* r13(=SP) in user space. */ "stm r1!, {r2, r3, r4, r5, r6}\n\t" "ldr r1, [r6]" : "=r" (tp), "=r" (orig_r0) : /* no input */ : "r2", "r3", "r4", "r5", "r6", "memory"); if (orig_r0) /* yield */ { if (tp->flag_sched_rr) chx_timer_dequeue (tp); chx_ready_enqueue (tp); running = NULL; } tp = chx_ready_pop (); if (tp && tp->flag_sched_rr) { chx_spin_lock (&q_timer.lock); chx_timer_insert (tp, PREEMPTION_USEC); chx_spin_unlock (&q_timer.lock); } asm volatile ( "b .L_CONTEXT_SWITCH" : /* no output */ : "r" (tp) : "memory"); } #endif